30 research outputs found

    The Effects of High Fat Diet, Bone Healing, and BMP-2 Treatment on Endothelial Cell Growth and Function

    Get PDF
    Angiogenesis is a vital process during the regeneration of bone tissue. The aim of this study was to investigate angiogenesis at the fracture site as well as at distal locations from obesity-induced type 2 diabetic mice that were treated with bone morphogenetic protein-2 (BMP-2, local administration at the time of surgery) to heal a femoral critical sized defect (CSD) or saline as a control. Mice were fed a high fat diet (HFD) to induce a type 2 diabetic-like phenotype while low fat diet (LFD) animals served as controls. Endothelial cells (ECs) were isolated from the lungs (LECs) and bone marrow (BMECs) 3 weeks post-surgery, and the fractured femurs were also examined. Our studies demonstrate that local administration of BMP-2 at the fracture site in a CSD model results in complete bone healing within 3 weeks for all HFD mice and 66.7% of LFD mice, whereas those treated with saline remain unhealed. At the fracture site, vessel parameters and adipocyte numbers were significantly increased in BMP-2 treated femurs, irrespective of diet. At distal sites, LEC and BMEC proliferation was not altered by diet or BMP-2 treatment. HFD increased the tube formation ability of both LECs and BMECs. Interestingly, BMP-2 treatment at the time of surgery reduced tube formation in LECs and humeri BMECs. However, migration of BMECs from HFD mice treated with BMP-2 was increased compared to BMECs from HFD mice treated with saline. BMP-2 treatment significantly increased the expression of CD31, FLT-1, and ANGPT2 in LECs and BMECs in LFD mice, but reduced the expression of these same genes in HFD mice. To date, this is the first study that depicts the systemic influence of fracture surgery and local BMP-2 treatment on the proliferation and angiogenic potential of ECs derived from the bone marrow and lungs

    Rauhut-Currier type homo- and heterocouplings involving nitroalkenes and nitrodienes

    No full text
    Reaction of nitroalkenes or nitrodienes with methyl vinyl ketone (MVK) or acrylate in the presence of the imidazole-LiCl catalyst system provides Rauhut-Currier (vinylogous Morita-Baylis-Hillman) adducts in moderate yield. Under similar conditions (imidazole-hydroquinone), nitroalkenes and nitrodienes undergo self-dimerization to afford the Rauhut-Currier adducts in varying yields. An alternative self-dimerization-nitro group elimination pathway in the presence tricyclohexylphosphine was observed with heteroaromatic nitroalkenes. A synthetically useful one-pot two step transformation of Rauhut-Currier adducts of nitroalkenes with MVK to 2,3-disubstituted cyclopentenones is also described

    The effects of spaceflight and fracture healing on distant skeletal sites

    Get PDF
    Spaceflight results in reduced mechanical loading of the skeleton, which leads to dramatic bone loss. Low bone mass is associated with increased fracture risk, and this combination may compromise future, long-term, spaceflight missions. Here, we examined the systemic effects of spaceflight and fracture surgery/healing on several non-injured bones within the axial and appendicular skeleton. Forty C57BL/6, male mice were randomized into the following groups: (1) Sham surgery mice housed on the earth (Ground + Sham); (2) Femoral segmental bone defect surgery mice housed on the earth (Ground + Surgery); (3) Sham surgery mice housed in spaceflight (Flight + Sham); and (4) Femoral segmental bone defect surgery mice housed in spaceflight (Flight + Surgery). Mice were 9 weeks old at the time of launch and were euthanized approximately 4 weeks after launch. Micro-computed tomography (μCT) was used to evaluate standard bone parameters in the tibia, humerus, sternebra, vertebrae, ribs, calvarium, mandible, and incisor. One intriguing finding was that both spaceflight and surgery resulted in virtually identical losses in tibial trabecular bone volume fraction, BV/TV (24-28% reduction). Another important finding was that surgery markedly changed tibial cortical bone geometry. Understanding how spaceflight, surgery, and their combination impact non-injured bones will improve treatment strategies for astronauts and terrestrial humans alike
    corecore