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The effects of spaceflight and 
fracture healing on distant skeletal 
sites
Ushashi C. Dadwal1,2, Kevin A. Maupin1, Ariane Zamarioli1,3, Aamir Tucker1, 
Jonathan S. Harris1, James P. Fischer1, Jeffery D. Rytlewski1, David C. Scofield1, 
Austin E. Wininger1, Fazal Ur Rehman Bhatti1,2, Marta Alvarez1,2, Paul J. Childress1,2, 
Nabarun Chakraborty4,5, Aarti Gautam4, Rasha Hammamieh4 & Melissa A. Kacena   1,2

Spaceflight results in reduced mechanical loading of the skeleton, which leads to dramatic bone loss. 
Low bone mass is associated with increased fracture risk, and this combination may compromise 
future, long-term, spaceflight missions. Here, we examined the systemic effects of spaceflight and 
fracture surgery/healing on several non-injured bones within the axial and appendicular skeleton. 
Forty C57BL/6, male mice were randomized into the following groups: (1) Sham surgery mice housed 
on the earth (Ground + Sham); (2) Femoral segmental bone defect surgery mice housed on the earth 
(Ground + Surgery); (3) Sham surgery mice housed in spaceflight (Flight + Sham); and (4) Femoral 
segmental bone defect surgery mice housed in spaceflight (Flight + Surgery). Mice were 9 weeks old 
at the time of launch and were euthanized approximately 4 weeks after launch. Micro-computed 
tomography (μCT) was used to evaluate standard bone parameters in the tibia, humerus, sternebra, 
vertebrae, ribs, calvarium, mandible, and incisor. One intriguing finding was that both spaceflight 
and surgery resulted in virtually identical losses in tibial trabecular bone volume fraction, BV/TV 
(24–28% reduction). Another important finding was that surgery markedly changed tibial cortical bone 
geometry. Understanding how spaceflight, surgery, and their combination impact non-injured bones 
will improve treatment strategies for astronauts and terrestrial humans alike.

International space programs have received more attention and funding in recent years1–3, including exploration 
of extraterrestrial bodies like the moon and Mars. This spike in interest will involve greater human participation; 
therefore, several well-documented consequences of space travel, including substantial muscle and skeleton loss4–6,  
will also need to be mitigated. During International Space Station (ISS) missions, seven of eight cosmonauts 
experienced a reduction in bone mineral density (BMD) (2.5–10.6%) in the lumbar vertebrae, all eight showed 
decreased BMD in the femur (3–10%), and four of the eight showed a 1.7–10.5% decrease in BMD in the femoral 
neck7. Early studies demonstrated that exposure to the microgravity environment of space resulted in losses in 
the spine, femoral neck, trochanter, and pelvis of about 1%–1.6%, with considerable variation between individu-
als8. More recently, a comprehensive study on identical twins (astronaut Scott Kelly and his brother, Mark Kelly) 
demonstrated that spaceflight causes significant changes in gene expression (particularly after 6 months of space-
flight exposure), epigenetic signatures, vascular remodeling, and inflammation9. Because spaceflight profoundly 
alters physiology and bone mass, fracture healing could possibly also be impacted. Indeed, one consequence 
of severe BMD loss is fracture risk. Astronauts spending 6 months in spaceflight have on average a 10% loss in 
BMD, which is 10-fold greater than the BMD loss observed in post-menopausal women10,11. Indeed, predictive 
models12,13 suggest the likelihood of wrist, spinal, and hip fractures increasing in astronauts due to compromised 
bone strength; however, the systemic response to fracture injury and repair on other bones is not well known.

This study is part of a larger project designed to investigate the response to fracture injuries in space and 
fracture healing therapeutics. As plans for long-term human colonization become a reality, patients with poor 
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bone health due to both reduced mechanical loading and microgravity will require comprehensive treatment. 
This manuscript, therefore, is intended to characterize the systemic effects of fracture healing and of spaceflight, 
separately and combined, on both the axial and appendicular skeleton via micro-computed tomography (µCT) 
analyses.

Results
In these studies, a segmental bone defect surgery was performed on the right femur in half of the mice (Surgery). 
The other half of the mice served as unoperated control mice (Sham). Here we sought to examine the systemic 
impacts of surgery, spaceflight, and their combination on other bones. As this was a multi-institutional/agency 
collaboration, not all tissues were available for analysis. Figure 1 details the bones available for analysis in this 
study, provides a representative reconstructed µCT image for each of the bones analyzed, and provides a timeline 
of the overall spaceflight experimental design. For each tissue, the datasets were examined for normal distribu-
tions using the Kolmogorov-Smirnov test. All data were found to have a normal distribution with the exception 
of trabecular humeri bone volume/tissue volume (BV/TV), trabecular number (Tb.N), and cortical humeri bone 
area/tissue area (B.Ar/T.Ar) as discussed below.

Systemic effects of femoral fracture surgery/bone healing and spaceflight on trabecular and 
cortical bone parameters in the appendicular skeleton (tibia and humerus).  With respect to the 
appendicular skeleton, for this study we had access to the right tibia (n = 5/group) (on the same leg which had 
surgery) as well as the left humerus (n = 9–10/group).

Tibiae.  Table 1 highlights the main tibial µCT outcomes. With respect to the trabecular compartment of the 
tibia, for mice remaining on earth, the bone volume fraction or bone volume/tissue volume (BV/TV) was sig-
nificantly reduced by 28% in mice which had surgery (Ground + Surgery) compared to unoperated control 
sham mice (Ground + Sham) (p = 0.02, t-test). Interestingly, a similar decrease in tibial BV/TV was observed 
in spaceflight mice with or without femoral surgery (Flight + Surgery and Flight + Sham) when compared to the 
Ground + Sham group. In general, a reduction in BV/TV could be explained by a reduction in the trabeculae 
thickness (Tb.Th), a decrease in the number of trabeculae (Tb.N), and/or an increase in trabecular spacing (Tb.
Sp). In these studies, 2-way ANOVA analyses showed that both gravitational condition (Ground or Spaceflight) 
and surgery (Sham or Surgery) significantly impacted Tb.N, Tb.Sp, and the structure model index (SMI). The 
Flight + Surgery mice had the greatest Tb.Sp and the lowest Tb.N, whereas Ground + Sham mice had the highest 
Tb.N and the lowest Tb.Sp. SMI is a measure of whether trabeculae are more “rod-like” or “plate-like” in appear-
ance. Ideal rods are given a value of 3 and ideal plates are given a value of 0. Of note, SMI typically increases 
with age-related osteoporosis14. Consistent with this, SMI was significantly increased (29%, p = 0.02, t-test) in 
Flight + Sham vs. Ground + Sham mice. The Ground + Sham tibial SMI was 47% lower than that observed in the 
Ground + Surgery mice (p = 0.01, t-test). A similar increase in tibial SMI was also observed in Flight + Surgery 
compared to Ground + Sham mice.

The following summarizes the main tibial cortical bone parameters. Surgery, irrespective of gravity, resulted 
in a significant reduction in bone area/tissue area or B.Ar/T.Ar (24% reduction on earth, p = 0.0001, and a 20% 
reduction in spaceflight, p = 0.0004, t-test). Here, no differences were detected among the groups for B.Ar. 
However, T.Ar was significantly higher in mice having surgery as compared to those without surgery (24% 
increase on earth, p = 0.004, and a 29% increase in spaceflight, p = 0.003, t-test). Since in surgical groups no 
changes were observed in B.Ar, but T.Ar was significantly higher, the marrow area (M.Ar = T.Ar - B.Ar), was 
also significantly larger in mice having surgery as compared to those without surgery (97% increase on earth, 
p = 0.00001, and a 90% increase in spaceflight, p = 0.0004, t-test).

Figure 1.  Experimental design and timeline. (A) Timeline detailing the overall experimental design including 
launch preparation/mouse acclimation, launch, and mouse euthanasia. (B) X-ray image of mouse skeleton with 
white arrows indicating the bones that were collected/analyzed. Representative reconstructed µCT images for 
each of these bones are shown.
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Humeri.  The humerus, unlike the tibia, showed no significant differences in the trabecular bone compart-
ment as a result of microgravity for 4 weeks or the animal undergoing a major orthopaedic surgery (Table 1). 
However, one interesting observation from plotting out individual humeri specimens is that for both BV/TV and 
Tb.N, the data appear to have a bimodal distribution (Fig. 2A,B). This bimodal distribution was only identified 
in the humeri and was not observed in any other bones. Indeed, the Kolmogorov–Smirnov test for normality 
determined that only the trabecular BV/TV, Tb.N, and cortical B.Ar/T.Ar humeri datasets were non-parametric. 
For humeri cortical bone parameters, Flight + Surgery humeri exhibited an 11% increase in M.Ar compared to 
Ground + Surgery humeri (p = 0.02, t-test). With no significant differences detected in B.Ar among the 4 groups, 
but with an increase in M.Ar for the Flight + Surgery humeri, an increase in T.Ar would be expected. Here, there 
was a 4% non-significant increase in Flight + Surgery T.Ar compared to Ground + Surgery T.Ar (p = 0.07, t-test).

Systemic effects of femoral fracture surgery/bone healing and spaceflight on bone parameters 
in the axial skeleton (third sternebral body, L4 vertebral body, tenth rib, calvarium, mandible, 
and incisor).  For this study we had access to the third sternebral body (n = 5/group), the L4 vertebral body 
(n = 9–10), and the tenth rib (n = 9–10). We also had access to the skull from which the calvaria (n = 9–10), man-
dible (n = 9–10), and incisor (n = 9–10) were assessed.

Sternebrae.  The small sample size available for sternebrae analyses decreased our power to detect significant 
differences. With this caveat in mind, our µCT analysis identified some potentially interesting trends (Table 2). 
A non-significant 16% increase in BV/TV was seen in the sternebrae of Ground + Surgery mice compared to 
Ground + Sham mice (p = 0.17, t-test). The significant 11% decrease in Tb.Sp observed in Ground + Surgery 
mice compared to Ground + Shams (p = 0.05, t-test) explains the trending increase in BV/TV as no differences 
were seen in the Tb.Th nor the Tb.N. As also detailed in Table 2, no differences in BV/TV were detected between 
Flight + Sham and Ground + Sham sternebrae; however, there were significant decreases in both Tb.Th (10% 
reduction, p = 0.02, t-test) and Tb.Sp (18% reduction, p = 0.04) in the spaceflight sham animals. Additionally, 
there was a significant 20% reduction in BV/TV in Flight + Surgery compared to Ground + Surgery sternebrae 

Parameters

Ground Flight

Sham Surgery Sham Surgery

Tibia

Trabecular bone

BV/TV (%) 25.1(4.3) 18.1 (3.5)* 18.2 (1.5)† 18.9 (8.9)

Tb. Th (mm) 0.052 (0.002) 0.047 (0.005) 0.044 (0.007)† 0.055 (0.014)

Tb.N (mm−1) 6.9 (0.4) 6.3 (0.5) 5.9 (0.8)† 5.8 (0.3)†

Tb.Sp (mm) 0.129 (0.010) 0.144 (0.012) 0.153 (0.017)† 0.160 (0.013)

SMI 1.7 (0.3) 2.5 (0.3)* 2.2 (0.2)† 2.3 (0.5)

Cortical bone

B.Ar/T.Ar (%) 71 (2) 54 (3)* 70 (5) 56 (3)*

M.Ar (mm2) 0.30 (0.04) 0.59 (0.07)* 0.31 (0.02) 0.59 (0.10)*
T.Ar (mm2) 1.03 (0.10) 1.28 (0.09)* 1.03 (0.08) 1.33 (0.14)*
B.Ar (mm2) 0.73 (0.08) 0.69 0.05) 0.72 (0.09) 0.74 (0.05)

Humerus

Trabecular bone

BV/TV (%) 13.6 (4.7) 12.6 (5.2) 14.1 (5.8) 11.3 (4.4)

Tb.Th (mm) 0.064 (0.006) 0.062 (0.006) 0.064 (0.006) 0.063 (0.007)

Tb.N (mm−1) 2.1 (0.6) 2.0 (0.7) 2.1 (0.7) 1.7 (0.6)

Tb.Sp (mm) 0.24 (0.04) 0.24 (0.04) 0.23 (0.05) 0.27 (0.06)

SMI 2.5 0.05) 2.6 (0.07) 2.6 (0.07) 2.6 (0.04)

Cortical bone

B.Ar/T.Ar (%) 61 (2) 60 (3) 60 (5) 58 (3)

M.Ar (mm2) 0.36 (0.03) 0.36 (0.03) 0.37 (0.04) 0.40 (0.03)†

T.Ar (mm2) 0.94 (0.07) 0.91 (0.05) 0.90 (0.06) 0.95 (0.03)

B.Ar (mm2) 0.58 (0.05) 0.55 (0.04) 0.53 (0.07) 0.55 (0.03)

Table 1.  Bone parameters for the appendicular skeleton (tibia:n = 5 and humerus:n = 9–10) as measured by µCT. 
Values are expressed as the mean ± standard deviation (SD). Bolded values indicate significant interactions were 
detected by 2-way ANOVA followed by Bonferroni post-hoc analyses for parametric datasets. For non-parametric 
datasets, Art-ANOVA was used to determine significance (no significant differences were detected). A Student’s 
t-test was used to detect significant differences based on (i) Surgery (e.g., Ground + Sham vs. Ground + Surgery or 
Flight + Sham vs. Flight + Surgery, p < 0.05, designated by *) or (ii) gravity (e.g., Ground + Sham vs. Flight + Sham 
or Ground + Surgery vs. Flight + Surgery, p < 0.05, designated by †). BV = Bone volume; TV = Tissue volume; 
Tb.Th = Trabecular thickness; Tb.N = Trabecular number; Tb.Sp = Trabecular spacing; SMI = Structure model index; 
B.Ar = Bone area; T.Ar = Tissue area; M.Ar = Marrow area.
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Figure 2.  Biomodal distribution of trabecular humerus bone data. Plotting each humerus specimen shows 
bimodal distribution of the samples for trabecular: (A) Bone volume/Tissue Volume (BV/TV) and (B) 
Trabecular Number (Tb.N).

Parameters

Ground Flight

Sham Surgery Sham Surgery

Sternebral body (third)

BV/TV (%) 9.7 (1.4) 11.3 (1.8) 9.6 (1.6) 9.0 (0.8)†

Tb.Th (mm) 0.041 (0.003) 0.040 (0.002) 0.037 (0.002)† 0.039 (0.001)

Tb.N (mm-1) 2.4 (0.4) 2.8 (0.3) 2.6 (0.5) 2.4 (0.2)†

Tb.Sp (mm) 0.231 (0.019) 0.205 (0.011)* 0.189 (0.031)† 0.214 (0.022)

Vertebral body (L4)

BV/TV (%) 18.7 (1.5) 18.5 (4.0) 17.4 (1.3) 15.9 (1.5)

Tb.Th (mm) 0.049 (0.005) 0.048 (0.006) 0.048 (0.003) 0.045 (0.004)

Tb.N (mm−1) 3.8 (0.2) 3.8 (0.4) 3.7 (0.2) 3.5 (0.2)

Tb.Sp (mm) 0.202 (0.013) 0.200 (0.006) 0.203 (0.009) 0.210 (0.016)

Rib (tenth)

B.Ar/T.Ar (%) 74 (2.6) 79 (3.5)* 74 (2.5) 73 (2.1)†

M.Ar (mm2) 0.030 (0.007) 0.019 (0.008)* 0.027 (0.007) 0.031 (0.005)†

T.Ar (mm2) 0.115 (0.018) 0.088 (0.024)* 0.103 (0.019) 0.114 (0.013)

B.Ar (mm2) 0.085 (0.011) 0.069 (0.017)* 0.076 (0.013) 0.083 (0.008)

Cs.Th (mm) 0.083 (0.003) 0.082 (0.006) 0.080 (0.004) 0.082 (0.002)

Table 2.  Bone parameters for the axial skeleton (sternebrae:n = 5, vertebrae:n = 9–10, and ribs:n = 9–10) 
as measured by µCT. Values are expressed as the mean ± standard deviation (SD). Bolded values indicate 
significant interactions were detected by 2-way ANOVA followed by Bonferroni post-hoc analyses. A Student’s 
t-test was used to detect significant differences based on (i) Surgery (e.g., Ground + Sham vs. Ground + Surgery 
or Flight + Sham vs. Flight + Surgery, p < 0.05, designated by*) or (ii) gravity (e.g., Ground + Sham vs. 
Flight + Sham or Ground + Surgery vs. Flight + Surgery, p < 0.05, designated by†). BV = Bone volume; 
TV = Tissue volume; Tb.Th = Trabecular thickness; Tb.N = Trabecular number; Tb.Sp = Trabecular spacing; 
B.Ar = Bone area; T.Ar = Tissue area; M.Ar = Marrow area; Cs.Th = Cross-sectional thickness.
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(p = 0.04, t-test). This reduction is likely attributable to the significant 14% decrease in Tb.N (p = 0.05, t-test) and 
the 4% trending increase in Tb.Sp (p = 0.19, t-test).

Vertebrae.  Data for the L4 vertebral bodies are presented in Table 2. Two-way ANOVA analyses showed that 
spaceflight resulted in a significant reduction in BV/TV and Tb.N irrespective of surgery (p < 0.05).

Ribs.  Both surgery and spaceflight resulted in several significant differences in the tenth rib (Table 2). A signifi-
cant 7% increase in B.Ar/T.Ar was observed in Ground + Surgery ribs compared to Ground + Sham ribs (p = 0.01, 
t-test). Although there was a 19% reduction in B.Ar (p = 0.04, t-test) and a 25% reduction in T.Ar (p = 0.03, 
t-test), the smaller value of T.Ar will account for the increase in B.Ar/T.Ar. As T.Ar is the sum of the M.Ar and 
B.Ar, it is not surprising that a significant 37% reduction in M.Ar was also observed (p = 0.02, t-test). The other 
notable changes observed in the rib parameters were an 8% significant reduction in B.Ar/T.Ar (p = 0.02, t-test), 
a non-significant 30% increase in T.Ar, a non-significant 20% increase in B.Ar (p = 0.17, t-test), and a significant 
63% increase in M.Ar (p = 0.04, t-test) in the ribs of Flight + Surgery mice compared to Ground + Surgery mice.

Calvaria.  The parietal bone of the mouse calvarium was analyzed as shown in Fig. 1. Table 3 shows that none of 
the bone parameters measured were significantly different between any of the groups.

Mandibles.  As shown in Fig. 1, the mandible was analyzed after subtracting the molar and the incisor. Although 
no significant differences were detected between any of the groups (Table 3), there was a non-significant 15% 
increase in the cementoenamel junction to alveolar bone crest, or CEJ-ABC, for the Flight + Surgery compared 
to Flight + Sham group (p = 0.09, t-test).

Incisors.  As illustrated in Table 3, with regard to the incisor, no significant differences were observed as a result 
of surgery (compared to sham mice). However, a significant 9% decrease in the percentage of enamel and dentin 
area ([E + D]Ar/T.Ar) was observed in Flight + Sham incisors compared to Ground + Sham incisors (p = 0.02, 
t-test). This appears to be a result of the 40% increase observed in dental pulp cavity or area (Pu.Ar) in the 
Flight + Sham incisors (p = 0.02, t-test).

Discussion
In space, mechanical loading of the skeleton is reduced, resulting in significant atrophy of both skeletal muscles 
and weight-bearing bones6–8,15,16. In addition to reported losses in BMD, astronauts experience decreased vitamin 
D levels17–19. All of these are known independent risk factors for both falls and fracture. Importantly, predic-
tive models12,13 have demonstrated that astronauts subjected to microgravity or partial gravity (Moon or Mars) 
will have a higher risk of wrist, femoral neck, and lumbar spine fractures than will humans on earth. During 
long-term spaceflights, these fractures could certainly compromise mission success and cause significant health 
complications for the injured astronaut. Therefore, it is important to study both the impacts of spaceflight on the 
skeleton and the systemic effects of fracture healing on the skeleton in microgravity environments. Consistent 

Parameters

Ground Flight

Sham Surgery Sham Surgery

Calvarium (parietal)

BV (mm3) 0.055 (0.005) 0.054 (0.003) 0.053 (0.003) 0.053 (0.005)

Width (mm) 0.164 (0.017) 0.166 (0.008) 0.156 (0.011) 0.155 (0.012)

Mandible

B.Ar/T.Ar (%) 69 (2) 68 (2) 68 (2) 69 (1)

M.Ar (mm2) 0.61 (0.05) 0.63 (0.04) 0.63 (0.05) 0.61 (0.03)

T.Ar (mm2) 1.96 (0.08) 1.94 (0.02) 1.96 (0.06) 1.95 (0.05)

B.Ar (mm2) 1.34 (0.04) 1.31 (0.02) 1.32 (0.05) 1.33 (0.04)

CEJ-ABC (mm) 0.204 (0.036) 0.192 (0.008) 0.193 (0.025) 0.221 (0.027)

Incisor

[E + D]Ar/T.Ar (%) 82 (6) 80 (9) 75 (6)† 82 (5)

T.Ar (mm2) 0.468 (0.015) 0.466 (0.005) 0.474 (0.012) 0.481 (0.015)

[E + D]Ar (mm2) 0.38 (0.03) 0.38 (0.03) 0.36 (0.03) 0.39 (0.04)

Pu.Ar (mm2) 0.083 (0.027) 0.089 (0.030) 0.116 (0.027)† 0.087 ± (0.023)

Table 3.  Bone parameters for the axial skeleton (calvarium, mandible, and incisor) as measured by µCT. 
Values are expressed as the mean ± standard deviation (SD). Bolded values indicate significant interactions 
were detected by 2-way ANOVA followed by Bonferroni post-hoc analyses (no significant differences were 
detected). A Student’s t-test was used to detect significant differences based on (i) Surgery (e.g., Ground + Sham 
vs. Ground + Surgery or Flight + Sham vs. Flight + Surgery) (no significant differences were detected) or (ii) 
gravity (e.g., Ground + Sham vs. Flight + Sham or Ground + Surgery vs. Flight + Surgery, p < 0.05, designated 
by†). BV = Bone volume; TV = Tissue volume; B.Ar = Bone area; T.Ar = Tissue area; M.Ar = Marrow area; CEJ-
ABC = Cementoenamel junction to alveolar bone crest; [E + D]Ar = [enamel + dentin] area; Pu.Ar = Dental 
pulp area.
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with previous reports of bone loss, our data demonstrated that spaceflight led to a significant 27% reduction in 
tibial trabecular bone fraction in unoperated Flight + Sham mice compared to unoperated Ground + Sham mice 
(Table 1). Similarly, surgery led to a 28% reduction in tibial trabecular bone fraction observed in mice housed 
on earth (same limb as injured femur, Ground + Surgery) compared to unoperated controls (Ground + Sham). 
Further, the Flight + Surgery mice also experienced a similar degree of tibial bone loss (25%) compared to 
Ground + Sham mice. Together these data suggest that both surgery to the ipsilateral femur and spaceflight result 
in similar, but not additive or synergistic, bone losses in the trabecular compartment of proximal tibia. This may 
suggest that the unloading during spaceflight and the unloading associated with altered weight-bearing after 
injury are responsible for this striking amount of bone loss over approximately a 4-week period of time. However, 
we cannot exclude that other systemic factors may be responsible for this bone loss, such as the stress response to 
both the spaceflight environment and injury20.

Another, perhaps even more impactful and intriguing finding from these studies is related to the changes 
observed in the cortical bone compartment of the tibia (Table 1). Here the findings were identical regardless 
of gravity. Thus, surgery appears to be responsible for the cortical bone changes observed. Specifically, there 
was a 24–29% increase in tibial cortical T.Ar when animals underwent surgery as compared to those not hav-
ing surgery. This increase was not associated with a change in B.Ar; however, there was a 90–97% increase in 
M.Ar. Figure 3 illustrates these cortical bone geometry changes. This striking change in geometry likely leads to 
markedly changed bone biomechanical properties if the tissue material properties remain unchanged. However, 
with such a dramatic change in periosteal expansion in under 4 weeks of time, although not specifically exam-
ined here, the material properties of the remodeled bone are likely also altered. For example, with this short 
time period the newly formed bone is likely to be undermineralized and/or to be woven bone. Of note, since 
all surgical mice experienced this marked tibial geometry change within 4 weeks of surgery, whereas other long 
bones such as the humeri did not exhibit similar changes, the tibial geometric changes appear to be a result of 
either reduced weight-bearing or separate biological events that would impact only the injured leg, such as neural 
or vessel changes. Additionally, the injured limb itself possibly experiences localized cellular or inflammatory 
responses. Regardless of the mechanism, these findings may have major implications for patients suffering from 
femoral fractures and for the health care professionals treating these patients. While further study is needed to 
fully understand these findings and implications, this highlights the importance of spaceflight investigations. 
Specifically, because few spaceflight specimens exist, we collected and analyzed as many tissues as possible. By 
contrast, in our earth-based femoral bone healing studies, we typically collect and focus on the injured femur and 
the contralateral femur, unless a specific study design requires analysis of other tissues. Thus, identification of 
changes in the tibia and humerus due to surgery were only found because of this more comprehensive spaceflight 
study.

As mentioned above, unlike the tibia, virtually no bone parameters were altered by spaceflight or surgery in 
the humerus (Table 1). Spaceflight alone did not alter trabecular or cortical bone parameters in the humerus, 
which is consistent with a previous investigation by Lloyd et al.21, where no significant differences in bone mass 
were observed in 9-week-old female mice subjected to 12 days of spaceflight (NASA STS-108, using an earlier 
generation of the caging hardware used here). However, a very recent study by Tominari et al.22 examined the 
impacts of 34 days of spaceflight or artificial gravity (~1G, centrifuge hardware onboard ISS) on the trabecular 
and cortical bone parameters in the humerus and tibia of male C57BL/6 mice that were 9 weeks of age at the time 
of launch. In that study the trabecular compartment of the tibia was similar to that in our current study; however, 
trabecular bone in the humerus was dramatically reduced in spaceflight compared to that observed with artificial 
gravity. We speculate this difference in humerus data is due to differences in caging hardware and the exercise, 

Figure 3.  Tibia cortical bone geometry changes. The illustration shows that the cortical bone of the tibial 
midshaft differs in geometry between sham and surgery mice. In the cross-sectional view (excluding the 
shaft), the marrow area (M.Ar) is in green, the bone area (B.Ar) is in blue, and the tissue area (T.AR) is the 
combination of the marrow area and bone area (blue + green). Although figure dimensions are exaggerated 
for visual understanding, the relationship as quantified by µCT data between sham (M.Ar, B.Ar, and T.Ar) and 
surgery (M.Ar’, B.Ar’, and T.Ar’) areas is as follows: M.Ar’ = 2M.Ar, B.Ar’ = B.Ar, and T.Ar’ = 1.3T.Ar. These 
images were adapted from Servier Medical Art with permission (http://smart.servier.com/).
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and therefore the muscle related-loading, the humeri receive. Specifically, the NASA hardware used here (Habitat) 
and by Lloyd et al.21 has a larger habitable surface area (882 in2) and foot print (59.7 in2), which can co-house up 
to 5 mice. This results in 11.94 in2/mouse for the footprint and 176 in2/mouse for the habitable surface area (the 
wire mesh allows mice to climb and access much of the 6 surfaces), and is well above the ≥8 in2 recommendation 
for mouse housing listed in the Guide for the Care and Use of Laboratory Animals23.

In contrast, the Japan Aerospace Exploration Agency (JAXA) habitat cage units (HCUs) house mice singly 
and are significantly smaller than the NASA Habitat as shown in their video footage, where mouse movements 
are limited22. Although permission has not yet been received from NASA to release videos of the mice used in 
these studies, the videos were examined by several members of the team including RH and MAK. The NASA 
videos show two routine behaviors of active mice in spaceflight. One is “floating,” and just like astronauts who 
use their arms to pull themselves from one end of the ISS to the other, floating mice use their forelimbs to push 
off or pull themselves from one end of the wire mesh cage to the other. The second behavior is running laps. 
Both of these behaviors would provide loading to the humerus, which does not appear to happen in the JAXA 
HCUs24. The two separate behaviors, running laps and floating, may also explain the biomodal distribution of the 
spaceflight humeri data presented in Fig. 2. For example, perhaps the mice with the higher BV/TV measurements 
were the mice running laps and were mechanically loading their humeri, whereas the cohort with lower BV/TV 
measurements may be the less mobile, floating mice. With similar logic, perhaps the humeri bone parameters of 
earth-housed mice had a bimodal distribution based on animal activity. These possibilities require further inves-
tigation. Another difference between the studies is co-housing of mice in our studies versus singly housed mice 
in the JAXA studies by Tominari et al.22 As mice are social animals, singly housing mice may lead to chronically 
elevated levels of stress, which could also impact bone parameters25–27.

In addition to the tibia and humerus, the sternebra, L4 vertebra, and tenth rib of the axial skeleton were exam-
ined. Most previous reports on the effects of microgravity on bone physiology examined weight-bearing bones; 
to our knowledge this is the first report looking at the sternbrae and ribs. With regard to the sternebrae (Table 2), 
perhaps the most intriguing observation is that the Ground + Surgery mice exhibited a >15% increase in BV/TV 
compared to all other groups. Although, this difference was only significant compared to Flight + Surgery mice, 
with a larger sample size, this difference might reach significance.

As shown in Table 2, for the L4 vertebrae there was a significant reduction in BV/TV in spaceflight mice 
compared to mice housed on the earth (2-way ANOVA). These trends were similar to that documented by oth-
ers for spaceflight investigation of lumbar vertebrae28,29. As also detailed in Table 2, the ribs showed significant 
reductions in the B.Ar, T.Ar, and M.Ar in mice having surgery and housed on earth compared to sham-operated 
controls also housed on earth (Ground + Surgery vs. Ground + Sham); as breathing is a major mechanical stimu-
lator of ribs, this likely reflects more shallow breathing post-surgery30. Interestingly, spaceflight also resulted in a 
significant reduction in rib B.Ar in unoperated control animals (Flight + Sham vs. Ground + Sham), which may 
be explained by the reduction in rib cage expansion observed during breathing in astronauts31.

Although several studies have been conducted on the effects of spaceflight on the soft tissue present in 
the skull, including reports of spaceflight-associated decreases in frontal and temporal gray matter volumes, 
increased somatosensory cortex, brain displacement within the skull, and ventricular volume expansion32–35, 
little is known on the effects of bone growth and remodeling. Previously, murine calvaria volume and thickness 
were reported to increase during the 15-day NASA Shuttle mission STS-13136; however, when the same group 
repeated the spaceflight study with a longer mission duration (30 days), they observed no significant changes 
in murine calvaria bone thickness and volume when compared to ground controls37. Here we also examined a 
longer mission duration (~4 weeks) and observed no significant changes in murine calvaria bone parameters 
via µCT (Table 3). We also did not see an increase in B.Ar in the mandible even though bone volume (region of 
interest *B.Ar) was reported to increase during STS-135’s 30-day spaceflight mission38. We did, however, note a 
non-significant 15% increase in the cementoenamel junction to alveolar bone crest distance or CEJ-ABC for the 
Flight + Surgery compared to the Flight + Sham group, suggesting the mandible may experience bone growth. 
We also observed a non-significant 5% decrease in the CEJ-ABC between Flight + Sham and Ground + Sham 
mice, which is consistent with the reports of Gosh et al.39. Interestingly, we report a decrease in enamel and dentin 
T.Ar in Flight + Sham incisors compared to Ground + Sham incisors due to a 40% increase in dental pulp cavity 
or area (Pu.Ar) in the Flight + Sham incisors. These data indicate that normal dental growth of the incisor may 
be impaired in spaceflight mice. Of note, the increase in dental pulp area seems to parallel the tibial marrow 
expansion.

The opportunities to conduct spaceflight studies are limited, and the resources available for these studies are 
minimal. This results in small sample sizes, restricted opportunities to reproduce findings, and differences in 
study designs such as age, sex, strain, and general health (wild-type vs. genetically altered or healthy vs. injured 
mice etc.). Further, different countries and institutions have access to different animal hardware/cages, which can 
also impact results. Here we compare skeletal findings in our unoperated “sham” mice with what has been shown 
by others, but also report novel findings that surgery has some systemic impacts on bones, some of which appear 
to be independent of gravity, whereas others appear to be dependent on gravity. Thus, additional studies will be 
required to more fully understand the impacts of spaceflight and surgery on the skeleton. That said, the studies 
presented here highlight the importance of continuing to complete spaceflight investigations as well as the impor-
tance of examining as many tissues as possible, not just the primary tissue impacted by whatever intervention is 
being investigated.
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Conclusions
In conclusion, the studies described here illustrate the systemic effects of fracture healing, of spaceflight, and of 
the two combined, on several bones within the appendicular and axial skeleton. Two of the most important find-
ings in this study were changes observed in the tibia. The first was that both spaceflight and surgery resulted in 
a significant, ~25% reduction in trabecular BV/TV in the tibia on the injured limb. The second was that surgery, 
irrespective of gravity, resulted in dramatic cortical bone changes in the tibia on the surgical limb, including sig-
nificant periosteal and marrow expansion. These findings are not only relevant to astronauts but also important 
to fracture patients on earth as well as to their caregivers.

Materials and Methods
Animals.  Seven-week-old male C57BL/6 J mice were purchased from Jackson Laboratories (Bar Harbor, 
ME). Mice were allo-reared, or cage-mated from weaning, in cohorts of 15 mice in N40 mouse cages (Ancare, 
Bellmore, NY). A full description of the acclimation process and experimental housing conditions was previously 
published40–42. In brief, once mice arrived at the Kennedy Space Center (KSC), they were placed in N40 cages 
containing a raised wire floor (3 openings/inch, Ancare) and were provided modified lixit water bottles and 
NASA Nutrient-upgraded Rodent Food Bar (NuRFB) to acclimate mice to spaceflight-like hardware/food. Mice 
were ear punched for identification purposes and weighed twice/week to determine whether they had adapted to 
utilization of the special water lixit and the NuRFB. Mice were maintained on a 12-hour light/dark cycle. Ambient 
temperature for all animals was maintained at 24–25 °C. All experiments were performed in accordance with the 
NIH Guide for the Care and Use of Laboratory Animals, and followed approved experimental protocols (NASA 
Animal Care and Use Committees, #FLT-15-101/NAS-15-105).

Groups.  These data are part of a larger experiment that addresses fracture healing in space aboard the ISS as 
part of NASA’s Rodent Research 4 mission. This manuscript represents data from spaceflight (Flight) and ground 
(Ground) mice that underwent segmental defect (Surgery) or sham surgery (Sham). It should be noted that 
ground controls were asynchronous by 5 days so that all conditions aboard the ISS could be replicated on earth for 
the ground controls. This includes environmental conditions such as cage temperature, food and water changes, 
and the timing from euthanasia to placement of dissected specimens into the cold stowage/freezers.

Surgery.  Two weeks after arrival at KSC and 4 days prior to launch, entire cages of mice were randomized 
into the following 4 groups: (1) Sham surgery housed on the earth (Ground + Sham); (2) Segmental bone defect 
surgery housed on the earth (Ground + Surgery); (3) Sham surgery housed on the ISS (Flight + Sham); or (4) 
Segmental bone defect surgery housed on the ISS (Flight + Surgery). The surgical protocol has been described 
previously40,41. In brief, mice were anesthetized with Ketamine-Xylazine (125–20 mg/kg), and the right leg was 
shaved and scrubbed three times with ethanol and Betadine to ensure the limb was sterile. Next, a 1 cm lateral 
incision was made over the right femoral midshaft. After the initial incision, the knee was then flexed, and a 
27-gauge needle was manually inserted between the condyles of the femur and threaded retrograde into the 
intramedullary canal. The needle was then partially removed, and a sterile Dremel rotary cutting tool (Dremel 
Inc., Racine, WI) was used to remove a 2 mm intercalary segment from the femoral diaphysis. Next, a synthetic 
graft composed of poly(propylene fumarate)/tricalcium phosphate was inserted into the defect site to maintain 
the defect size43. The needle was then advanced through the synthetic graft and using a twisting motion bore 
through the greater trochanter. The exposed needle tip was then bent back on itself, and the needle was pulled 
anterograde to stabilize the femur and defect. The opposite end of the needle was cut as close to the distal femur 
as possible. Next, a saline-soaked collagen sponge (RCM6 Resorbable Collagen Membrane, ACE, Brockton, MA) 
was wrapped around the synthetic scaffold and sutured into place. The muscle was sutured closed and then the 
skin was closed using wound clips (7 mm, Braintree Scientific, Braintree, MA). Mice were monitored until they 
recovered from the anesthetic. After recovery, mice were returned to their original cages, and K3392 Rest Stops 
or resting boards (Bio-Serve, Flemington, NJ) were added for the first 2 days of recovery before the 10 healthi-
est mice/group (determined by NASA veterinarians in collaboration with MAK and PJC) were transferred into 
spaceflight hardware 2 days prior to launch (NASA Rodent Transporters which house the mice while they are on 
SpaceX and NASA Rodent Habitats which house mice while they are on the ISS)42.

Sample collection.  Mice were approximately 9 weeks old at launch (SpaceX CRS-10, February 19, 2017) and 
approximately 13 weeks old at euthanasia. Specifically, mice were euthanized between 24 and 28 days post-launch 
as astronauts could only euthanize and dissect 8 mice/day. Mice were euthanized by injection of ketamine/xyla-
zine (150/45 mg/kg), a closed chest cardiac puncture with blood withdraw, followed by a cervical dislocation. For 
five mice in each group, the right hindlimb was removed at the hip and placed in 10% neutral buffered formalin 
or NBF (transferred to 4 °C within ~4–6 hours). These specimens remained at 4 °C in 10% NBF until they were 
returned to Indiana University School of Medicine approximately 2 weeks after euthanasia. Then the samples 
were washed with ice cold phosphate buffered saline (PBS), transferred into ice cold 70% ethanol, and then stored 
at 4 °C until they underwent µCT scanning as described below. The remaining carcass was wrapped in aluminum 
foil and transferred to the −95 °C cold storage unit aboard the ISS (on Earth transferred to the −80 °C freezer). 
For the other 5 mice in each group, the carcass remained intact, and the whole carcass was wrapped in alumi-
num foil and frozen. Carcasses remained at −80 °C or below while on the ISS or while maintained at Kennedy 
Space Center, through shipping to the US Army Center for Environmental Health Research at Fort Detrick, 
MD approximately 2 weeks after euthanasia. The mice were then partially thawed (placed on ice blankets) for 
~15 minutes, tissue dissection was completed for each carcass (~45 minutes total time spent outside of the −80 °C 
freezer) and the bones investigated here were immediately snap frozen aside from the humerus. For the humerus 
the whole forelimb was placed in 10% NBF for 72 hours, washed with ice cold PBS, transferred into ice cold 70% 
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ethanol, shipped to Indiana University School of Medicine at 4 °C and then stored at 4 °C until they underwent 
µCT scanning. The frozen bone specimens were also shipped to Indiana University School of Medicine, but on 
dry ice, and were then stored at −80 °C until they were removed for specific dissection as detailed below.

Here we are reporting on the systemic impacts of spaceflight and segmental bone defect surgery on the axial 
and appendicular skeleton; fracture healing results will be published in a separate report.

Micro-computed tomography.  Tibias were imaged using a desktop SCANCO µCT35 imaging system 
(SCANCO Medical, Brüttisellen, Switzerland) with all scans obtained at 55 kV using a 12 μm voxel size. For 
trabecular analyses of the tibias (n = 5), the region of interest (ROI) is also the tissue volume (TV) and was 
defined as the region 0.25 mm distal of the proximal growth plate and extended an additional 0.5 mm proximally. 
Variables recorded include: bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular num-
ber (Tb.N), trabecular spacing (Tb.Sp), and structure model index (SMI). With respect to the cortical analysis 
of the tibia, a 1 mm ROI was obtained from a region that was 0.25 mm proximal from the tibiofibular junction. 
The area contained within the periosteal surface is the cortical TV. Initial variables recorded were BV and cortical 
thickness (Ct.Th). BV was converted to bone area (B.Ar) by dividing by the height of the analyzed bone segment 
(1 mm). Marrow area (M.Ar) and tissue area (T.Ar) were calculated by the equation for the area of a cylinder: 
B.Ar = π*(total radius2 − marrow radius2). By substituting total radius = Ct.Th + marrow radius and solving for 
marrow radius, we obtained the following equation: marrow radius = ((B.Ar/π) − Ct.Th2)/(2*Ct.Th). Next, M.Ar 
was calculated as π*marrow radius2, and T.Ar was calculated as B.Ar + M.Ar.

For all frozen bones analyzed in this study, samples were briefly thawed, surrounding soft tissue was removed, 
and the bone of interest was isolated and fixed for 72 hours in 10% NBF, washed with ice cold PBS, and then stored 
in ice cold 70% ethanol at 4 °C. A desktop SkyScan 1172 µCT imaging system (SkyScan, Kontich, Germany) was 
used to image humeri, calvariae, mandibles, ribs, sternebra, and vertebrae. Scans were obtained at 60 kV using 
a 5.9 μm voxel size for the humeri, calvaria, mandibles, sternebra, and vertebrae. The rib scans were obtained at 
60 kV using a 9.8 μm voxel size. Images were reconstructed (NRecon v.1.7.3) and analysis was carried out on 
Skyscan software (Dataviewer, CTAn, Kontich, Belgium).

With regard to trabecular analyses of the humeri (n = 9–10), the ROI started at 0.5 mm distal from the prox-
imal growth plate and extended an additional 0.5 mm distally. 3D analyses were completed to obtain BV/TV, 
Tb.Th, Tb.N, Tb.Sp, and SMI. For the cortical analyses of the humeri, the ROI was set at 0.5 mm proximal from 
the midshaft and extended an additional 0.5 mm proximally, to avoid the deltoid tuberosity. 2D analyses were 
completed to obtain B.Ar, T.Ar, B.Ar/T.Ar, M.Ar, and Ct.Th.

With regard to trabecular analyses of the sternum (n = 5) and vertebrae (n = 9–10), ROIs were obtained from 
1 mm tall segments centered at the third sternebral body or the L4 vertebral body. 3D analyses were conducted 
and recorded variables include BV/TV, Tb.Th, Tb.N, and Tb.Sp.

For the ribs (n = 9–10), a 0.5 mm ROI was analyzed at the midshaft of the tenth rib. Cortical rib parameters 
recorded include B.Ar, T.Ar, B.Ar/T.Ar, M.Ar, and cross-sectional thickness (Cs.Th).

With respect to calvaria (n = 9–10), the ROI was a 100 pixel3 volume centered at the parietal eminence. 3D 
analyses were completed and TV and BV were obtained. BV/TV and marrow volume (MV = TV–BV) were also 
calculated. Additionally, calvarial width or thickness was obtained by collecting 3 width measurements from 3 
random images.

For the mandible (n = 9–10) the ROI was a single coronal slice taken through the middle of the posterior 
root of the first molar. The molar was then subtracted from the ROI prior to performing a 2D analysis on the 
mandible with the incisor. A separate 2D analysis was also completed on just the incisor. Mandible variables 
included T.Ar, B.Ar, and M.Ar. The latter was calculated as follows: M.Ar = T.Ar − B.Ar. Of note, the mandible 
values were obtained by subtracting the equivalent incisor values (T.Ar; dentin + enamel area [D + E]Ar; pulp 
area or Pu.Ar = T.Ar − [D + E]Ar). For both the mandible and incisor ROIs the shrink-wrap function was used to 
ensure accurate T.Ar measurements. Additionally, the lingual cementum–enamel to alveolar bone crest distance 
(CEJ–ABC) was acquired by measuring the distance from the cementum edge on the lingual tooth surface to the 
alveolar bone apex.

It should be noted that one Flight + Surgery mouse was euthanized in spaceflight ~1 week after launch based 
on veterinarian recommendation due to inactivity of the mouse compared to cage-mates. This resulted in n = 9 in 
the Flight + Surgery group as compared to n = 10 in the other 3 groups where applicable.

Statistics.  All data were tested for normality using the Kolmogorov–Smirnov test. Parametric data between 
sham and surgery, and, ground and flight were analyzed by two-way ANOVAs followed by Tukey post-hoc anal-
yses. For some analyses, a Student’s t-test was also used. A significance threshold was set at α = 0.05. Statistical 
analyses were determined using Prism v5.0. Non-parametric data was analyzed using Art-ANOVA44 and 
Microsoft Excel office 2010 (Microsoft corporation, Redmond, WA). Graphs were generated using Prism v5.0 
(GraphPad, San Diego, CA) and figures were generated using Adobe Photoshop (Adobe, San Jose, CA).

Data Availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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