33,311 research outputs found

    Partial suppression of the radial orbit instability in stellar systems

    Full text link
    It is well known that the simple criterion proposed originally by Polyachenko and Shukhman (1981) for the onset of the radial orbit instability, although being generally a useful tool, faces significant exceptions both on the side of mildly anisotropic systems (with some that can be proved to be unstable) and on the side of strongly anisotropic models (with some that can be shown to be stable). In this paper we address two issues: Are there processes of collisionless collapse that can lead to equilibria of the exceptional type? What is the intrinsic structural property that is responsible for the sometimes noted exceptional stability behavior? To clarify these issues, we have performed a series of simulations of collisionless collapse that start from homogeneous, highly symmetrized, cold initial conditions and, because of such special conditions, are characterized by very little mixing. For these runs, the end-states can be associated with large values of the global pressure anisotropy parameter up to 2K_r/K_T \approx 2.75. The highly anisotropic equilibrium states thus constructed show no significant traces of radial anisotropy in their central region, with a very sharp transition to a radially anisotropic envelope occurring well inside the half-mass radius (around 0.2 r_M). To check whether the existence of such almost perfectly isotropic "nucleus" might be responsible for the apparent suppression of the radial orbit instability, we could not resort to equilibrium models with the above characteristics and with analytically available distribution function; instead, we studied and confirmed the stability of configurations with those characteristics by initializing N-body approximate equilibria (with given density and pressure anisotropy profiles) with the help of the Jeans equations.Comment: 26 pages, 9 figures, accepted for publication in The Astrophysical Journa

    Mapping isoprene emissions over North America using formaldehyde column observations from space

    Get PDF
    We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. Isoprene is the dominant HCHO precursor over North America in summer, and its lifetime (≃1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r2 = 0.69, n = 756, bias = +11%) and the in situ summertime HCHO measurements over North America (r2 = 0.47, n = 10, bias = −3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U.S. EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements than either GEIA or BEIS2 (r2 = 0.71, n = 10, bias = −10%)

    The 100-month Swift catalogue of supergiant fast X-ray transients I. BAT on-board and transient monitor flares

    Full text link
    We investigate the characteristics of bright flares for a sample of supergiant fast X-ray transients and their relation to the orbital phase. We have retrieved all Swift/BAT Transient Monitor light curves, and collected all detections in excess of 5σ5\sigma from both daily- and orbital-averaged light curves in the time range of 2005-Feb-12 to 2013-May-31. We also considered all on-board detections as recorded in the same time span and selected those within 4 arcmin of each source in our sample and in excess of 5σ5\sigma. We present a catalogue of over a thousand BAT flares from 11 SFXTs, down to 15-150keV fluxes of 6×1010\sim6\times10^{-10} erg cm2^{-2} s1^{-1} (daily timescale) and 1.5×109\sim1.5\times10^{-9} erg cm2^{-2} s1^{-1} (orbital timescale, averaging 800\sim800s) and spanning 100 months. The great majority of these flares are unpublished. This population is characterized by short (a few hundred seconds) and relatively bright (in excess of 100mCrab, 15-50keV) events. In the hard X-ray, these flares last in general much less than a day. Clustering of hard X-ray flares can be used to indirectly measure the length of an outburst, even when the low-level emission is not detected. We construct the distributions of flares, of their significance (in terms of sigma) and their flux as a function of orbital phase, to infer the properties of these binary systems. In particular, we observe a trend of clustering of flares at some phases as PorbP_{\rm orb} increases, as consistent with a progression from tight, circular or mildly eccentric orbits at short periods, to wider and more eccentric orbits at longer orbital periods. Finally, we estimate the expected number of flares for a given source for our limiting flux and provide the recipe for calculating them for the limiting flux of future hard X-ray observatories. (Abridged).Comment: Accepted for publication in Astronomy and Astrophysics. 23 pages, 8 figures. Full catalog files will be available at CDS and at http://www.ifc.inaf.it/sfxt/ Fixed typos and updated reference

    Six-Dimensional (1,0) Superconformal Models and Higher Gauge Theory

    Full text link
    We analyze the gauge structure of a recently proposed superconformal field theory in six dimensions. We find that this structure amounts to a weak Courant-Dorfman algebra, which, in turn, can be interpreted as a strong homotopy Lie algebra. This suggests that the superconformal field theory is closely related to higher gauge theory, describing the parallel transport of extended objects. Indeed we find that, under certain restrictions, the field content and gauge transformations reduce to those of higher gauge theory. We also present a number of interesting examples of admissible gauge structures such as the structure Lie 2-algebra of an abelian gerbe, differential crossed modules, the 3-algebras of M2-brane models and string Lie 2-algebras.Comment: 31+1 pages, presentation slightly improved, version published in JM

    Surveyor landing radar test program review Final report

    Get PDF
    Test program evaluation and modifications for Surveyor radar altimeter and Doppler velocity sensor syste

    A Burst and Simultaneous Short-Term Pulsed Flux Enhancement from the Magnetar Candidate 1E 1048.1-5937

    Full text link
    We report on the 2004 June 29 burst detected from the direction of the Anomalous X-ray Pulsar (AXP) 1E 1048.1-5937 using the Rossi X-ray Timing Explorer (RXTE). We find a simultaneous increase of ~3.5 times the quiescent value in the 2-10 keV pulsed flux of 1E 1048.1-5937 during the tail of the burst which identifies the AXP as the burst's origin. The burst was overall very similar to the two others reported from the direction of this source in 2001. The unambiguous identification of 1E 1048.1-5937 as the burster here confirms it was the origin of the 2001 bursts as well. The epoch of the burst peak was very close to the arrival time of 1E 1048.1-5937's pulse peak. The burst exhibited significant spectral evolution with the trend going from hard to soft. During the 11 days following the burst, the AXP was observed further with RXTE, XMM-Newton and Chandra. Pre- and post-burst observations revealed no change in the total flux or spectrum of the quiescent emission. Comparing all three bursts detected thus far from this source we find that this event was the most fluent (>3.3x10^-8 erg/cm^2 in the 2-20 keV band), had the highest peak flux (59+/-9x10^-10 erg/s/cm^2 in the 2-20 keV band), and the longest duration (>699 s). The long duration of the burst differentiates it from Soft Gamma Repeater (SGR) bursts which have typical durations of ~0.1 s. Bursts that occur preferentially at pulse maximum, have fast-rises and long X-tails containing the majority of the total burst energy have been seen uniquely from AXPs. The marked differences between AXP and SGRs bursts may provide new clues to help understand the physical differences between these objects.Comment: 24 pages, 4 figures, submitted to the Astrophysical Journa

    Verification of computer-aided designs of traveling-wave tubes utilizing novel dynamic refocusers and graphite electrodes for the multistage depressed collector

    Get PDF
    A computational procedure for the design of TWT-refocuser-MDC systems was used to design a short dynamic refocusing system and highly efficient four-stage depressed collector for a 200-W, 8- to 18-GHz, TWT. The computations were carried out with advanced, multidimensional computer programs which model the electron beam as a series of disks of charge and follow their trajectories from the RF input of the TWT, through the slow-wave structure and refocusing section, to their points of impact in the depressed collector. Secondary emission losses in the MDC were treated semi-quantitatively by injecting a representative beam of secondary electrons into the MDC analysis at the point of impact of each primary beam. A comparison of computed and measured TWT and MDC performance showed very good agreement. The electrodes of the MDC were fabricated from a particular form of isotropic graphite that was selected for its low secondary electron yield, ease of machinability, and vacuum properties. This MDC was tested (at CW) for more than 1000 hr with negligible degradation in TWT and MDC performances
    corecore