160 research outputs found
Generator voltage stabilisation for series-hybrid electric vehicles
This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle
Distributed control of chemical process networks
In this paper, we present a review of the current literature on distributed (or partially decentralized) control of chemical process networks. In particular, we focus on recent developments in distributed model predictive control, in the context of the specific challenges faced in the control of chemical process networks. The paper is concluded with some open problems and some possible future research directions in the area
Concentration fluctuations in nonisothermal reaction-diffusion systems
In this paper a simple reaction-diffusion system, namely a binary fluid mixture with an association-dissociation reaction between the two components, is considered. Fluctuations at hydrodynamic spatiotemporal scales when a temperature gradient is present in this chemically reacting system are studied. First, fluctuating hydrodynamics when the system is in global equilibrium (isothermal) is reviewed. Comparing the two cases, an enhancement of the intensity of concentration fluctuations in the presence of a temperature gradient is predicted. The nonequilibrium concentration fluctuations are spatially long ranged, with an intensity depending on the wave number q. The intensity exhibits a crossover from a proportional to q(-4) to a proportional to q(-2) behavior depending on whether the corresponding wavelength is smaller or larger than the penetration depth of the reacting mixture. This opens a possibility to distinguish between diffusion- or activation-controlled regimes of the reaction by measuring these fluctuations. In addition, the possible observation of these fluctuations in nonequilibrium molecular dynamics simulations is considered
A Parametric Analysis of Prompting Procedures to Encourage Electrical Energy Conservation
Proportional-Integral Control and Model Predictive Control of Extractive Dividing-Wall Column Based on Temperature Differences
- …
