1,358 research outputs found

    Elasticity of an interfacial particle raft

    Full text link
    We study the collective behaviour of a close packed monolayer of non-Brownian particles at a fluid-liquid interface. Such a particle raft forms a two-dimensional elastic solid and can support anisotropic stresses and strains, e.g. it buckles in uniaxial compression and cracks in tension. We characterise this solid in terms of a Young's modulus and Poisson ratio derived from simple theoretical considerations and show the validity of these estimates by using an experimental buckling assay to deduce the Young's modulus.Comment: 7 pages, 5 figure

    Collaboration and contestation in further and higher education partnerships in England: a Bourdieusian field analysis

    Get PDF
    Internationally, ‘College for All’ policies are creating new forms of vocational higher education (HE), and shifting relationships between HE and further education (FE) institutions. In this paper, we consider the way in which this is being implemented in England, drawing on a detailed qualitative case study of a regional HE–FE partnership to widen participation. We focus on the complex mix of collaboration and contestation that arose within it, and how these affected socially differentiated groups of students following high- and low-status routes through its provision. We outline Bourdieu’s concept of ‘field’ as a framework for our analysis and interpretation, including its theoretical ambiguities regarding the definition and scale of fields. Through hermeneutic dialogue between data and theory, we tentatively suggest that such partnerships represent bridges between HE and FE. These bridges are strong between higher-status institutions, but highly contested between lower-status institutions competing closely for distinction. We conclude that the trajectories and outcomes for socially disadvantaged students require attention and collective action to address the inequalities they face, and that our theoretical approach may have wider international relevance beyond the English case

    Logarithmic scaling of higher-order temperature moments in the atmospheric surface layer

    Full text link
    A generalized logarithmic law for high-order moments of passive scalars is proposed for turbulent boundary layers. This law is analogous to the generalized log law that has been proposed for high-order moments of the turbulent longitudinal velocity and is derived by combining the random sweeping decorrelation hypothesis with a spectral model informed by the attached eddy hypothesis. The proposed theory predicts that the high-order moments of passive scalar fluctuations within the inertial sublayer will vary logarithmically with wall-normal distance (zz). The proposed theory is evaluated using high frequency time-series measurements of temperature and streamwise velocity fluctuations obtained in the first meter of the atmospheric surface layer (ASL) under near-neutral thermal stratification. The logarithmic dependence with zz within the inertial sublayer is observed in both the air temperature and velocity moments, with good agreement to the predictions from the proposed theory. Surprisingly, the proposed theory appears to be as, if not more, valid for transported passive scalars than for the longitudinal velocity

    Coulomb correlation effects in zinc monochalcogenides

    Full text link
    Electronic structure and band characteristics for zinc monochalcogenides with zinc-blende- and wurtzite-type structures are studied by first-principles density-functional-theory calculations with different approximations. It is shown that the local-density approximation underestimates the band gap and energy splitting between the states at the top of the valence band, misplaces the energy levels of the Zn-3d states, and overestimates the crystal-field-splitting energy. Regardless of the structure type considered, the spin-orbit-coupling energy is found to be overestimated for ZnO and underestimated for ZnS with wurtzite-type structure, and more or less correct for ZnSe and ZnTe with zinc-blende-type structure. The order of the states at the top of the valence band is found to be anomalous for ZnO in both zinc-blende- and wurtzite-type structure, but is normal for the other zinc monochalcogenides considered. It is shown that the Zn-3d electrons and their interference with the O-2p electrons are responsible for the anomalous order. The typical errors in the calculated band gaps and related parameters for ZnO originate from strong Coulomb correlations, which are found to be highly significant for this compound. The LDA+U approach is by and large found to correct the strong correlation of the Zn-3d electrons, and thus to improve the agreement with the experimentally established location of the Zn-3d levels compared with that derived from pure LDA calculations

    The sphere-in-contact model of carbon materials

    Get PDF
    A sphere-in-contact model is presented that is used to build physical models of carbon materials such as graphite, graphene, carbon nanotubes and fullerene. Unlike other molecular models, these models have correct scale and proportions because the carbon atoms are represented by their atomic radius, in contrast to the more commonly used space-fill models, where carbon atoms are represented by their van der Waals radii. Based on a survey taken among 65 undergraduate chemistry students and 28 PhD/postdoctoral students with a background in molecular modeling, we found misconceptions arising from incorrect visualization of the size and location of the electron density located in carbon materials. Based on analysis of the survey and on a conceptual basis we show that the sphere-in-contact model provides an improved molecular representation of the electron density of carbon materials compared to other molecular models commonly used in science textbooks (i.e., wire-frame, ball-and-stick, space-fill). We therefore suggest that its use in chemistry textbooks along with the ball-and-stick model would significantly enhance the visualization of molecular structures according to their electron density

    Quantum Nondemolition State Measurement via Atomic Scattering in Bragg Regime

    Full text link
    We suggest a quantum nondemolition scheme to measure a quantized cavity field state using scattering of atoms in general Bragg regime. Our work extends the QND measurement of a cavity field from Fock state, based on first order Bragg deflection [9], to any quantum state based on Bragg deflection of arbitrary order. In addition a set of experimental parameters is provided to perform the experiment within the frame work of the presently available technology.Comment: 11 pages text, 4 eps figures, to appear in letter section of journal of physical society of Japa
    • 

    corecore