188 research outputs found

    Anomaly and quantum corrections to solitons in two-dimensional theories with minimal supersymmetry

    Full text link
    We reexamine the issue of the soliton mass in two-dimensional models with N =1 supersymmetry. The superalgebra has a central extension, and at the classical level the soliton solution preserves 1/2 of supersymmetry which is equivalent to BPS saturation. We prove that the property of BPS saturation, i.e. the equality of the soliton mass to the central charge, remains intact at the quantum level in all orders of the weak coupling expansion. Our key finding is an anomaly in the expression for the central charge. The classical central charge, equal to the jump of the superpotential, is amended by an anomalous term proportional to the second derivative of the superpotential. The anomaly is established by various methods in explicit one-loop calculations. We argue that this one-loop result is not affected by higher orders. We discuss in detail how the impact of the boundary conditions can be untangled from the soliton mass calculation. In particular, the soliton profile and the energy distribution are found at one loop. A "supersymmetry" in the soliton mass calculations in the non-supersymmetric models is observed.Comment: 50 pages, LaTex, 2 figures. The version exactly matching that published in Phys.Rev. D. The most essential addition is a footnote, clarifying multiplet shortenin

    Novel Branches of (0,2) Theories

    Full text link
    We show that recently proposed linear sigma models with torsion can be obtained from unconventional branches of conventional gauge theories. This observation puts models with log interactions on firm footing. If non-anomalous multiplets are integrated out, the resulting low-energy theory involves log interactions of neutral fields. For these cases, we find a sigma model geometry which is both non-toric and includes brane sources. These are heterotic sigma models with branes. Surprisingly, there are massive models with compact complex non-Kahler target spaces, which include brane/anti-brane sources. The simplest conformal models describe wrapped heterotic NS5-branes. We present examples of both types.Comment: 36 pages, LaTeX, 2 figures; typo in Appendix fixed; references added and additional minor change

    The self-dual gauge fields and the domain wall fermion zero modes

    Full text link
    A new type of gauge fixing of the Coulomb gauge domain wall fermion system that reduces the fluctuation of the effective running coupling and the effective mass of arbitrary momentum direction including the region outside the cylinder cut region is proposed and tested in the 163×32×1616^3\times 32\times 16 gauge configurations of RBC/UKQCD collaboration. The running coupling at the lowest momentum point does not show infrared suppression and compatible with the experimental data extracted from the JLab collaboration. The source of the fluctuation of the effective mass near momentum p=p=0.6GeV region is expected to be due to the domain wall fermion zero modes.Comment: 12 pages 2 figures, extended arguments and references adde

    Exact vortex solutions in a CP^N Skyrme-Faddeev type model

    Full text link
    We consider a four dimensional field theory with target space being CP^N which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP^1. We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x^1+i x^2) and (x^3+x^0) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.Comment: 21 pages, plain latex, no figure

    Nonperturbative SUSY Correlators at Finite Temperature

    Get PDF
    We calculate finite temperature effects on a correlation function in the two dimensional supersymmetric nonlinear O(3) sigma model. The correlation function violates chiral symmetry and at zero temperature it has been shown to be a constant, which gives rise to a double-valued condensate. Within the bilinear approximation we find an exact result in a one-instanton background at finite temperature. In contrast to the result at zero temperature we find that the correlation function decays exponentially at large distances.Comment: Latex, 27 pages, 1 Postscript figur

    Gauge Symmetry Enhancement and Radiatively Induced Mass in the Large N Nonlinear Sigma Model

    Full text link
    We consider a hybrid of nonlinear sigma models in which two complex projective spaces are coupled with each other under a duality. We study the large N effective action in 1+1 dimensions. We find that some of the dynamically generated gauge bosons acquire radiatively induced masses which, however, vanish along the self-dual points where the two couplings characterizing each complex projective space coincide. These points correspond to the target space of the Grassmann manifold along which the gauge symmetry is enhanced, and the theory favors the non-Abelian ultraviolet fixed point.Comment: 11 pages, REVTEX, typos are corrected, version to appear in Phys. Rev.

    Topological Lattice Actions

    Full text link
    We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge Q. Irrespective of this, in the 2-d O(3) model the topological susceptibility \chi_t = \l/V is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some classically important features of an action are irrelevant for reaching the correct quantum continuum limit.Comment: 38 pages, 12 figure

    Yang-Mills Theory as a Deformation of Topological Field Theory, Dimensional Reduction and Quark Confinement

    Get PDF
    We propose a reformulation of Yang-Mills theory as a perturbative deformation of a novel topological (quantum) field theory. We prove that this reformulation of the four-dimensional QCD leads to quark confinement in the sense of area law of the Wilson loop. First, Yang-Mills theory with a non-Abelian gauge group G is reformulated as a deformation of a novel topological field theory. Next, a special class of topological field theories is defined by both BRST and anti-BRST exact action corresponding to the maximal Abelian gauge leaving the maximal torus group H of G invariant. Then we find the topological field theory (D>2D>2) has a hidden supersymmetry for a choice of maximal Abelian gauge. As a result, the D-dimensional topological field theory is equivalent to the (D-2)-dimensional coset G/H non-linear sigma model in the sense of Parisi and Sourlas dimensional reduction. After maximal Abelian gauge fixing, the topological property of magnetic monopole and anti-monopole of four-dimensional Yang-Mills theory is translated into that of instanton and anti-instanton in two-dimensional equivalent model. It is shown that the linear static potential in four-dimensions follows from the instanton--anti-instanton gas in the equivalent two-dimensional non-linear sigma model obtained from the four-dimensional topological field theory by dimensional reduction, while the remaining Coulomb potential comes from the perturbative part in four-dimensional Yang-Mills theory. The dimensional reduction opens a path for applying various exact methods developed in two-dimensional quantum field theory to study the non-perturbative problem in low-energy physics of four-dimensional quantum field theories.Comment: 58 pages, Latex, no figures, version accepted for publication in Phys. Rev. D (additions of Discussion, references and minor changes

    On the sign problem in 2D lattice super Yang--Mills

    Full text link
    In recent years a new class of supersymmetric lattice theories have been proposed which retain one or more exact supersymmetries for non-zero lattice spacing. Recently there has been some controversy in the literature concerning whether these theories suffer from a sign problem. In this paper we address this issue by conducting simulations of the N=(2, 2) and N=(8, 8) supersymmetric Yang--Mills theories in two dimensions for the U(N) theories with N=2,3,4, using the new twisted lattice formulations. Our results provide evidence that these theories do not suffer from a sign problem in the continuum limit. These results thus boost confidence that the new lattice formulations can be used successfully to explore non-perturbative aspects of four-dimensional N=4 supersymmetric Yang--Mills theory.Comment: 22 pages, 12 figure
    • 

    corecore