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Abstract. We perform Monte Carlo simulations of the CPN−1 model on the square lattice
for N = 10, 21, and 41. Our focus is on the severe slowing down related to instantons.
To fight this problem we employ open boundary conditions as proposed by Lüscher and
Schaefer for lattice QCD. Furthermore we test the efficiency of parallel tempering of a
line defect. Our results for open boundary conditions are consistent with the expectation
that topological freezing is avoided, while autocorrelation times are still large. The results
obtained with parallel tempering are encouraging.

1 Introduction

The CPN−1 model shares fundamental properties such as asymptotic freedom and confinement with
QCD. Therefore it serves as a toy model of QCD. It has been shown [1, 2] that the model has a non-
trivial vacuum structure with stable instanton solutions. It turned out that these topological objects
pose a particular problem in the simulation of the lattice CPN−1 model, similar to lattice QCD.

On the torus, in the continuum limit, the configuration space is decomposed into sectors that are
characterized by their topological charge. At finite lattice spacing, the free energy barriers between
such sectors increase as the lattice spacing decreases. For Markov chain Monte Carlo algorithms
that walk in a quasi continuous fashion through configuration space this means that they become
essentially non-ergodic and slowing down becomes dramatic. Numerical results are compatible with
an increase of autocorrelation times that is exponential in the inverse lattice spacing. In the case of the
CPN−1 model this is numerically verified, for example, in refs. [3–5]. Modelling the autocorrelation
times with a more conventional power law Ansatz, large powers are needed to fit the data. From
a practical point of view, the consequence is that it becomes virtually impossible to access lattice
spacings below a certain threshold. The numerical studies show that in the case of the CPN−1 model
the problem becomes worse with increasing N. Since it is much less expensive to simulate the two-
dimensional model than lattice QCD, it is a good test bed for new ideas and algorithms that could
overcome the severe slowing down of the topological modes. For example simulated tempering [6]
has been studied in ref. [7] with moderate success. More recently, “trivializing maps in the Hybrid
Monte Carlo algorithm” [8] or the “Metadynamics” method [9] have been tested.

A very principle solution of the problem had been suggested in ref. [10]. By abandoning periodic
boundary conditions in one of the directions in favour of open ones, barriers between the topological
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sectors are abolished. The proposal has been further tested [11, 12] and adopted in large scale sim-
ulations of lattice QCD with dynamical fermions [13, 14]. Here we shall probe in detail how open
boundary conditions effect the slowing down in the case of the CPN−1 model. Since the CPN−1 model
is much cheaper to simulate than lattice QCD, a larger range of lattice spacings can be studied and
autocorrelation functions can be computed more accurately.

Furthermore, we shall explore parallel tempering [15–18] as a solution to our problem. Parallel
tempering is a well established approach in statistical physics to overcome effective non-ergodicity
due to a ragged free energy landscape. The idea of parallel tempering and similar methods is to enlarge
the configuration space such that the hills can be easily by-passed. A prototype problem is the study
of spin-glasses, where parallel tempering is mandatory. For recent work see for example ref. [19].
Typically a global parameter such as the temperature or an external field is used as parameter of the
tempering. Here instead, we shall discuss a line defect.

Finally we like to mention that for the CPN−1 model dual formulations can be found. These can be
simulated by using the worm algorithm [20, 21]. In these dual formulations there are no topological
sectors and hence severe slowing down does not occur in the simulation.

2 The model

We consider a square lattice with sites x = (x0, x1), where xi ∈ {0, 1, 2, ..., Li − 1}. The lattice spacing
is set to a = 1. This means that we trade a decreasing lattice spacing for an increasing correlation
length. The action is

S = −βN
∑
x,µ

(
z̄x+µ̂zxλx,µ + zx+µ̂z̄xλ̄x,µ − 2

)
, (1)

where zx is a complex N-component vector with zxz̄x = 1 and λx,µ is a complex number with λx,µλ̄x,µ =

1. The gauge fields live on the links, which are denoted by x, µ, where µ ∈ {0, 1} gives the direction and
µ̂ is a unit vector in µ-direction. In 1-direction we always consider periodic boundary conditions. In
0-direction either open or periodic boundary conditions are considered. We implement open boundary
conditions in a crude way, simply setting β = 0 for the links that connect x0 = L0 − 1 and x0 = 0.

2.1 The observables

We measure the energy, the magnetic susceptibility, the second moment and the exponential corre-
lation length. For the definition of these quantities see for example ref. [3] or section II A of ref.
[22]. Our main focus is on the topology of the field. Motivated by eq. (33) of ref. [3] we define the
plaquette angle

θplaq,x = θx,µ + θx+µ̂,ν − θx+ν̂,µ − θx,ν − 2nπ , µ � ν , (2)

where θx,µ = arg{z̄xzx+µ̂} and the integer n is chosen such that −π < θplaq,x ≤ π. We define the
topological charge density qx =

1
2πθplaq,x. The topological charge on the lattice with periodic boundary

conditions is defined by

Q =
∑

x

qx =
1

2π

∑
x

θplaq,x . (3)

The topological susceptibility is then given by

χt =
1
V
〈Q2〉 = 1

L0L1

〈∑
xy

qxqy

〉
=

1
L0L1

〈∑
x0 x1

qx0,x1

∑
y0y1

qy0y1

〉
=

1
L0

〈∑
x0

q̃x0

∑
y0

q̃y0

〉
, (4)
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The topological susceptibility is then given by

χt =
1
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where we define q̃x0 =
1√
L1

∑
x1

qx0,x1 . Note that the definition of the topological charge given in ref.
[23] and (3) are not equivalent at finite lattice spacing. We checked numerically that the difference
between the two definitions decreases quickly with increasing β. Also cooling of the configurations
strongly reduces the difference.

On the lattice with periodic boundary conditions, Q can take only integer values. Naively, θplaq,x

adds up to zero, since each link angle appears with both signs. A nontrivial result is due to the fact
that θplaq,x is thrown back to the interval [−π, π).

In the case of open boundary conditions, the definitions of susceptibilities have to be adapted. In
order to avoid large finite size effects, the sites with a distance less than l0 from the open boundary are
not taken into account, when computing the observables. Motivated by the rightmost part of eq. (4)
we arrive at

χt,open =
1

L0 − 2l0

L0−l0−1∑
x0=l0

〈q̃2
x0
〉 +

lmax∑
w=1

2
1

L0 − 2l0 − w

L0−l0−w−1∑
x0=l0

〈q̃x0 q̃x0+w〉 . (5)

3 Basic algorithms

As basic algorithm we use a hybrid of the Metropolis, the heat bath and the microcanonical overre-
laxation algorithm. To a large extend, we follow section III of ref. [3]. Let us first discuss the updates
of the site variables and then the updates of the gauge fields. In an elementary step of the algorithm
we update the variable at a single site x, while keeping the gauge fields and the variables at all other
sites fixed. The part of the action that depends on this site variable can be written as as

S̃ (zx) = −Re zxF̄x , where Fx = 2Nβ
∑
µ

[
λ̄x,µzx+µ̂ + λx−µ̂,µzx−µ̂

]
. (6)

Note that the problem at this point is identical to the update of an O(2N) invariant vector model with
site variables of unit length. Instead of F̄x we would have to deal with the sum of the variables on the
nearest neighbour sites. The microcanonical update keeps S̃ (zx) fixed, while the new value of zx has
maximal distance from the old one. It is given by eq. (43a) of ref. [3]:

z′x = 2
Re zxF̄x

|Fx|2
Fx − zx . (7)

In addition to these updates, we have to perform updates that change the value of the action. To this
end we implemented a heat bath algorithm that is applied to the subset of three of the 2N compo-
nents of zx, where we count both the real and the imaginary parts. The heat bath update is identical
to the one used in the simulation of the O(3)-Heisenberg model on the lattice or for the update of
SU(2) subgroups in the simulation of pure SU(N) lattice gauge models [24, 25]. We run through all N
complex components of zx taking the real and the imaginary part of the component as first two com-
ponents for the heat bath. The third component is randomly chosen among the real or imaginary parts
of the remaining N − 1 components of zx. Note that the CPU-time required by the microcanonical
overrelaxation update is about one order of magnitude less than that for the heat bath update.

For fixed variables z the gauge fields can be updated independently of each other. The action reads

S̃ g(λx,µ) = −Reλx,µ f̄x,µ , where fx,µ = 2Nβ zx+µ̂z̄x . (8)

Here we perform a four hit Metropolis update, where the stepsize was chosen such that the acceptance
rate is roughly 50%, and a microcanonical update, see eq. (43b) of [3].
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3.1 Autocorrelation times

The performance of a Markov chain Monte Carlo algorithm is characterized by the autocorrelation
time. There are different definitions of the autocorrelation time. These are based on the autocorrelation
function. The autocorrelation function of an estimator A is given by

ρA(t) =
〈AiAi+t〉 − 〈A〉2
〈A2〉 − 〈A〉2 . (9)

The modulus of the autocorrelation function is bounded from above by an exponentially decaying
function. In practice one often finds that the autocorrelation function at large t is given by ρA(t) �
cA exp(−t/τexp,A). The integrated autocorrelation time of the estimator A is given by

τint,A = 0.5 +
∞∑

t=1

ρA(t) . (10)

The summation in eq. (10) has to be truncated at some finite tmax. Since ρA(t) is falling off exponen-
tially at large distances, the relative statistical becomes large at large distances. Therefore it is manda-
tory to truncate the summation at some point that is typically much smaller than the total length of the
simulation. In the literature one can find various recommendations how this upper bound should be
chosen. Fore example, Wolff [26] proposes to balance the statistical error with the systematic one that
is due to the truncation of the sum.

4 Simulations with open boundary conditions

In order to keep the fraction of discarded sites small, it seems useful to chose L0 � L1. On the other
hand, since the time needed for topological objects to diffuse to the centre of the lattice or back to
the boundary increases with increasing L0, too large values of L0 are not advisable. After performing
preliminary simulations we decided to take L0 = 4L1 throughout. Furthermore we take l0 ≈ 10ξ2nd and
lmax = l0. For N = 10, using standard simulations and periodic boundary conditions, ξ2nd ≈ 23 can be
reached [5]. Hence it is hard to demonstrate a clear advantage for open boundary conditions. Instead
for N = 21 it is virtually impossible to go beyond ξ2nd ≈ 6 by using periodic boundary conditions
and standard simulations. Therefore in the following we focus on our simulations for N = 21. We
find that for L1 � 16ξ2nd finite L1 effects can be ignored at the level of our statistical accuracy. We
performed simulations for a large number of β-values, ranging from β = 0.625 up to 0.95. For each
value of β, we performed 2×106 update cycles. For the larger values of β, we discarded 50000 update
cycles at the beginning of the simulation. One update cycle consists of one sweep over all sites of the
lattice using the heat bath algorithm, the 4 hit Metropolis update of the gauge fields, and finally nov

sweeps using the overrelaxation algorithm for both the site variables and the gauge fields. We perform
a measurement of the observables for each cycle. Autocorrelation times are quoted in units of these
update cycles. The number of overrelaxation updates nov is chosen to be proportional to the correlation
length. It increases from nov = 3 for β = 0.625 up to nov = 28 for β = 0.95. The second moment
correlation length increases from ξ2nd = 2.2968(5) at β = 0.625 up to 18.2419(43) at β = 0.95.

Let us discuss the autocorrelation times of the topological susceptibility (4,5). For periodic bound-
ary conditions, τint increases very rapid, compatible with exponential in the correlation length. Instead,
for open boundary conditions, we first see an increase that is similar to that for periodic boundary
conditions. The difference here can be attributed to the different definitions of the topological suscep-
tibility (4,5). Then, for ξ2nd � 5 the autocorrelation time levels off for open boundary conditions.
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Figure 1. We plot the integrated
autocorrelation time τint of the topological
susceptibility for both periodic and open
boundary conditions as a function of the
second moment correlation length ξ2nd for
N = 21. Here τint is given in units of update
cycles. For large ξ2nd the effort for one update
cycle is proportional to the number of
overrelaxation sweeps nov. Hence, the plateau
of τint corresponds to a dynamical critical
exponent z ≈ 1, taking single sweeps as unit
of time.

The behaviour in the case of open boundary conditions can be explained along the lines of ref.
[12]. For ξ2nd � 5 changes of the topological charge are dominantly due to the creation and destruction
of instantons in the bulk. Then for ξ2nd � 5 the diffusion from and to the boundaries completely
dominates. This diffusion is not effected by the severe slowing down. Our numerical results for
N = 41 confirm the conclusions drawn here for N = 21.

5 Parallel tempering in a line defect

In a parallel tempering simulation one introduces a sequence of Nt systems that differ in one parameter
of the action. For each system there is a configuration {z, λ}t. The tempering parameter might have a
physical meaning. In statistical physics simulations this parameter is mostly the temperature. However
it could also be a parameter that is introduced only for the sake of the simulation, as it is the case here.
At one end of the sequence there is the system that we want to study. In our case this is a lattice with
L0 = L1, periodic boundary conditions in both directions, and the coupling constant is the same for
all links. For the system at the other end, it should be easy to sample the whole configuration space.
Motivated by the success of the simulations with open boundary conditions, we use a system with a
line defect to this end. Such a line defect is sketched in fig. 2. For ld = L1 we recover open boundary
conditions.

Figure 2. Sketch of a line defect. The red line indicates a line defect of
length ld. The coupling on the blue links is reduced or, in the extreme
case, completely switched off. In our simulations we take for simplicity a
linear interpolation: The couplings on the blue links are multiplied by
cr(t) = 1 − t/(Nt − 1). The homogeneous system corresponds to t = 0,
while for t = Nt − 1 the coupling along the defect line is completely
eliminated. The green lines confine the area of a rectangle centred around
the defect line. The size of the rectangle is 2li × (ld + 2li), where i gives
the level. In our simulations li+1 = li/2 for i > 1. For each update cycle at
level i we perform ni+1 update cycles at level i + 1. At level i = 0 we
sweep over the whole lattice. l1 = 2m, where m is an integer and l1 ≈ ξ.
Furthermore limax = 1.

In addition to updates of the individual systems there are exchanges of configurations between the
systems. A swap of configurations {z, λ}′t1 = {z, λ}t2 , {z, λ}′t2 = {z, λ}t1 between t1 and t2 is accepted
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with the probability

Aswap = min
[
1, exp

(−S t2 ({z, λ}t1 ) − S t1 ({z, λ}t2 ) + S t1 ({z, λ}t1 ) + S t2 ({z, λ}t2 )
)]
. (11)

In our simulations we run from t1 = 0 up to t1 = Nt − 2 in steps of one, proposing to swap the
configurations at t1 and t2 = t1 + 1. The number of replica Nt is chosen such that the acceptance rate
for the swap of configurations is larger than 30% for all t1. Note that S t2 and S t1 differ only on the
defect line. Typically the swap of configurations is alternating with standard updates of the individual
configurations. Typically, when the tempering parameter is homogeneous in space, a sweep over the
whole lattice is performed. In contrast, here we temper in a defect that takes only a small fraction of
the lattice. Therefore it is advisable to update only some part of the lattice that is centred around the
defect. To this end, we introduce a sequence of rectangles of decreasing size, each associated with a
level of our update scheme. For details see Fig. 2. In one update cycle, at a given level, we sweep over
the rectangle, updating all Nt configurations: Once using the heat bath algorithm for the site variables
and the 4 hit Metropolis update for the gauge fields. Then follow nov,i overrelaxation sweeps of the site
variables and the gauge fields. For small i, nov,i is the same as for our simulations with open boundary
conditions. For larger i, smaller values are taken. The update cycle at a given level is completed by
a swap of configurations (11). We chose ni such that for each level of the update scheme, roughly
the same amount of CPU time is spent. The larger ld, the more topological objects can be generated
or destroyed. On the other hand, for increasing ld, Nt has to be enlarged to keep the acceptance rate
above 30%. Our numerical study shows that ld ≈ ξ is the optimal choice. We perform a translation
of the configuration for t = 0 after each swap. This way changes in the topology are injected at any
location on the lattice and diffusion is not needed.

We performed simulations for N = 10, 21, and 41 and various values of β. Let us discuss the
simulation for N = 21 and β = 0.95 in more detail. We used ld = 16 and Nt = 32. The complete
update cycle over all levels is characterized by n1 = 24, n2 = n3 = n4 = 3, and n5 = n6 = 2. The
number of overrelaxation updates per cycle is 28, 14, 7, 7, 3, and 3 at levels 1, 2, 3, 4, 5, and 6,
respectively. We find that the acceptance rate is about 81.4% for the pair t = 0 and 1. It drops to
39.4% for the pair t = 26 and 27. Then it increases again to 47.3% for the pair t = 30 and 31. The
simulation, consisting of 50370 complete update cycles over all levels, took 25 days on a 4 core PC
running with 8 threads. This is about the same CPU time that is used for the corresponding run with
open boundary conditions. The error bar of the topological susceptibility is smaller by a factor of 2.3
compared with the simulation with open boundary conditions.

6 Physics results and comparison with the large N-expansion

Following ref. [27]
ξ2nd

ξexp
=

√
2
3
+ O
(
N−2/3

)
. (12)

Our results obtained for N = 10, 21 and 41, which are plotted in Fig. 3 a are still quite far from this
asymptotic value. Therefore we abstain from estimating the coefficient of the O(N−2/3) corrections.

The product χtξ
2 should have a finite continuum limit. For the exponential correlation length the

1/N-expansion gives [28]

χtξ
2
exp =

3
4πN

+ O
(
N−5/3

)
. (13)

For the second moment correlation length a faster convergence with increasing N is obtained [27]

χtξ
2
2nd =

1
2πN

(
1 − 0.38088...

N

)
+ O
(
N−3
)
. (14)
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above 30%. Our numerical study shows that ld ≈ ξ is the optimal choice. We perform a translation
of the configuration for t = 0 after each swap. This way changes in the topology are injected at any
location on the lattice and diffusion is not needed.

We performed simulations for N = 10, 21, and 41 and various values of β. Let us discuss the
simulation for N = 21 and β = 0.95 in more detail. We used ld = 16 and Nt = 32. The complete
update cycle over all levels is characterized by n1 = 24, n2 = n3 = n4 = 3, and n5 = n6 = 2. The
number of overrelaxation updates per cycle is 28, 14, 7, 7, 3, and 3 at levels 1, 2, 3, 4, 5, and 6,
respectively. We find that the acceptance rate is about 81.4% for the pair t = 0 and 1. It drops to
39.4% for the pair t = 26 and 27. Then it increases again to 47.3% for the pair t = 30 and 31. The
simulation, consisting of 50370 complete update cycles over all levels, took 25 days on a 4 core PC
running with 8 threads. This is about the same CPU time that is used for the corresponding run with
open boundary conditions. The error bar of the topological susceptibility is smaller by a factor of 2.3
compared with the simulation with open boundary conditions.

6 Physics results and comparison with the large N-expansion

Following ref. [27]
ξ2nd

ξexp
=

√
2
3
+ O
(
N−2/3

)
. (12)

Our results obtained for N = 10, 21 and 41, which are plotted in Fig. 3 a are still quite far from this
asymptotic value. Therefore we abstain from estimating the coefficient of the O(N−2/3) corrections.

The product χtξ
2 should have a finite continuum limit. For the exponential correlation length the

1/N-expansion gives [28]

χtξ
2
exp =

3
4πN

+ O
(
N−5/3

)
. (13)

For the second moment correlation length a faster convergence with increasing N is obtained [27]

χtξ
2
2nd =

1
2πN

(
1 − 0.38088...

N

)
+ O
(
N−3
)
. (14)
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(a) We plot the ratio ξexp/ξ2nd as a function of ξ2nd .
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Figure 3. Physics results for N = 10, 21 and 41.

In Fig. 3 b we plot ξ22ndχt as a function of ξ2nd. Looking at the figure, the numerical data seem
to converge nicely to the scaling limit. Corrections to scaling seem to be smaller for larger values
of N. Taking simply the largest values of β for each N we get ξ22ndχt = 0.01737(8), 0.00767(5), and
0.00391(2) for N = 10, 21, and 41, respectively. This can be compared with results quoted in the
literature. For N = 10 one finds for example ξ22ndχt = 0.01719(10)(3) and 0.0175(3) in refs. [4, 5],
respectively. For N = 21 one finds ξ22ndχt = 0.0080(2) and 0.0076(3) in refs. [4, 7], respectively.
For N = 41 we find in ref. [7] the results ξ22ndχt = 0.0044(4) and 0.0036(4) for β = 0.57 and
0.6, respectively. Our estimates are essentially consistent with those presented in the literature. In
particular for large values of N, we improved the accuracy of the estimates. To see the effect of
leading corrections, it is useful to multiply ξ22ndχt by 2πN. Using our numbers, we get 1.091(5),
1.012(7), and 1.007(5) for N = 10, 21, and 41, respectively. As already discussed in ref. [4] it is a bit
puzzling that the numbers suggest a 1/N correction with the opposite sign as that of eq. (14).

7 Summary and conclusions

We have shown that the severe slowing down in the simulation of the lattice CPN−1 model can be
avoided by using open boundary conditions in one of the directions. We studied parallel tempering in
a line defect as an alternative. Our numerical results are encouraging. Focussing on the statistical error
of the topological susceptibility, the simulation with open boundary conditions is outperformed by a
factor of about 4. The crucial question is, of course, whether parallel tempering in a defect structure
is helpful in simulations of lattice QCD. A more detail account of this study is given in [22].
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