2,129 research outputs found
RX J0806+15: the shortest period binary?
The X-ray source RX J0806+15 was discovered using ROSAT , and shows an X-ray light curve with a prominent modulation on a period of 321.5 s. We present optical observations in which we report the detection of its optical counterpart. We find an optical period consistent with the X-ray period. We do not find convincing evidence for a second period in the data: this implies the 321.5-s period is the orbital period. As such it would be the shortest period stellar binary system yet known. We discuss the nature of this system. We conclude that an isolated neutron star and an intermediate polar interpretation is unlikely and that a double degenerate interpretation is the most likely
EMCCDs for space applications
This paper describes a qualification programme for Electron-Multiplication Charge Coupled Devices (EMCCDs) for use in space applications. While the presented results are generally applicable, the programme was carried out in the context of CCD development for the Radial Velocity Spectrometer (RVS) instrument on the European Space Agency's cornerstone Gaia mission. We discuss the issues of device radiation tolerance, charge transfer efficiency at low signal levels and life time effects on the electron-multiplication gain. The development of EMCCD technology to allow operation at longer wavelengths using high resistivity silicon, and the cryogenic characterisation of EMCCDs are also described
The health effects of air pollution in Delhi, India
The authors report the results of a time-series study of the impact of particulate air pollution on daily mortality in Delhi. They find: a) A positive, significant relationship between particulate pollution and daily nontraumatic deaths as well as deaths from certain causes (respiratory and cardiovascular problems) and for certain age groups. b) In general, these impacts are smaller than those estimated for other countries, where on average a 100-microgram increase in total suspended particulates (TSP) leads to a 6-percent increase in nontraumatic mortality. In Delhi, such an increase in TSP is associated with a 2.3-percent increase in deaths. c) The differences in magnitudes of the effects are most likely explained by differences in distributions of age at death and cause of death, as most deaths in Delhi occur before the age of 65 and are not attributed to causes with a strong association with air pollution. d) Although air pollution seems to have less impact on mortality counts in Delhi, the number of life-years saved per death avoided is greater in Delhi than in US cities -- because the age distribution of impacts in these two places varies. In the United States particulates have the greatest influence on daily deaths among persons 65 and older. In Delhi, they have the greatest impact in the 15-to-44 age group. That means that for each death associated with air pollution, on average more life-years would be saved in Delhi than in the United States. Large differences in the magnitude of effects do call into question the validity of the"concentration-response transfer"procedure. In that procedure, concentration-response relationships found for industrial countries are applied to cities in developing countries with little or no adjustment, to estimate the effects of pollution on daily mortality.Demographics,Public Health Promotion,Montreal Protocol,Health Monitoring&Evaluation,Air Quality&Clean Air,Health Monitoring&Evaluation,Montreal Protocol,Demographics,Environmental Economics&Policies,Health Systems Development&Reform
Propagating Residual Biases in Cosmic Shear Power Spectra
In this paper we derive a full expression for the propagation of
multiplicative and additive shape measurement biases into the cosmic shear
power spectrum. In doing so we identify several new terms that are associated
with selection effects, as well as cross-correlation terms between the
multiplicative and additive biases and the shear field. The computation of the
resulting bias in the shear power spectrum scales as the fifth power of the
maximum multipole considered. Consequently the calculation is unfeasible for
large l-modes, and the only tractable way to assess the full impact of shape
measurement biases on cosmic shear power spectrum is through forward modelling
of the effects. To linear order in bias parameters the shear power spectrum is
only affected by the mean of the multiplicative bias field over a survey and
the cross correlation between the additive bias field and the shear field. If
the mean multiplicative bias is zero then second order convolutive terms are
expected to be orders of magnitude smaller.Comment: 10 pages, accepted to the Open Journal of Astrophysic
ORFEUS II Far-UV Spectroscopy of AM Herculis
Six high-resolution (\lambda/\Delta\lambda ~ 3000) far-UV (\lambda\lambda =
910-1210 \AA) spectra of the magnetic cataclysmic variable AM Herculis were
acquired in 1996 November during the flight of the ORFEUS-SPAS II mission. AM
Her was in a high optical state at the time of the observations, and the
spectra reveal emission lines of O VI \lambda\lambda 1032, 1038, C III \lambda
977, \lambda 1176, and He II \lambda 1085 superposed on a nearly flat
continuum. Continuum flux variations can be described as per Gansicke et al. by
a ~ 20 kK white dwarf with a ~ 37 kK hot spot covering a fraction f~0.15 of the
surface of the white dwarf, but we caution that the expected Lyman absorption
lines are not detected. The O VI emission lines have narrow and broad component
structure similar to that of the optical emission lines, with radial velocities
consistent with an origin in the irradiated face of the secondary and the
accretion funnel, respectively. The density of the narrow- and broad-line
regions is n_{nlr} ~ 3\times 10^{10} cm^{-3} and n_{blr} ~ 1\times 10^{12}
cm^{-3}, respectively, yet the narrow-line region is optically thick in the O
VI line and the broad-line region is optically thin; apparently, the velocity
shear in the broad-line region allows the O VI photons to escape, rendering the
gas effectively optically thin. Unexplained are the orbital phase variations of
the emission-line fluxes.Comment: 15 pages, 6 Postscript figures; LaTeX format, uses aaspp4.sty;
table2.tex included separately because it must be printed sideways - see
instructions in the file; accepted on April 17, 1998 for publication in The
Astrophysical Journa
VLT/FORS2 observations of the optical counterpart of the isolated neutron star RBS 1774
X-ray observations performed with ROSAT led to the discovery of a group
(seven to date) of X-ray dim and radio-silent middle-aged isolated neutron
stars (a.k.a. XDINSs), which are characterised by pure blackbody spectra
(kT~40-100 eV), long X-ray pulsations (P=3-12 s), and appear to be endowed with
relatively high magnetic fields, (B~10d13-14 G). RBS 1774 is one of the few
XDINSs with a candidate optical counterpart, which we discovered with the VLT.
We performed deep observations of RBS 1774 in the R band with the VLT to
disentangle a non-thermal power-law spectrum from a Rayleigh-Jeans, whose
contributions are expected to be very much different in the red part of the
spectrum. We did not detect the RBS 1774 candidate counterpart down to a 3
sigma limiting magnitude of R~27. The constraint on its colour, (B-R)<0.6,
rules out that it is a background object, positionally coincident with the
X-ray source. Our R-band upper limit is consistent with the extrapolation of
the B-band flux (assuming a 3 sigma uncertainty) for a set of power-laws F_nu
~nu^alpha with spectral indeces alpha<0.07. If the optical spectrum of RBS 1774
were non-thermal, its power-law slope would be very much unlike those of all
isolated neutron stars with non-thermal optical emission, suggesting that it is
most likely thermal. For instance, a Rayleigh-Jeans with temperature T_O = 11
eV, for an optically emitting radius r_O=15 km and a source distance d=150 pc,
would be consistent with the optical measurements. The implied low distance is
compatible with the 0.04 X-ray pulsed fraction if either the star spin axis is
nearly aligned with the magnetic axis or with the line of sight, or it is
slightly misaligned with respect to both the magnetic axis and the line of
sight by 5-10 degreesComment: 8 pages, 8 postscript figures, accepted for publication in Astronomy
& Astrophysic
The emergence of quantum capacitance in epitaxial graphene
We found an intrinsic redistribution of charge arises between epitaxial
graphene, which has intrinsically n-type doping, and an undoped substrate. In
particular, we studied in detail epitaxial graphene layers thermally elaborated
on C-terminated - (- ()). We have investigated
the charge distribution in graphene-substrate systems using Raman spectroscopy.
The influence of the substrate plasmons on the longitudinal optical phonons of
the substrates has been detected. The associated charge redistribution
reveals the formation of a capacitance between the graphene and the substrate.
Thus, we give for the first time direct evidence that the excess negative
charge in epitaxial monolayer graphene could be self-compensated by the
substrate without initial doping. This induced a previously unseen
redistribution of the charge-carrier density at the substrate-graphene
interface. There a quantum capacitor appears, without resorting to any
intentional external doping, as is fundamentally required for epitaxial
graphene. Although we have determined the electric field existing inside the
capacitor and revealed the presence of a minigap () for
epitaxial graphene on - face terminated carbon, it remains small in
comparison to that obtained for graphene on face terminated . The
fundamental electronic properties found here in graphene on substrates
may be important for developing the next generation of quantum technologies and
electronic/plasmonic devices.Comment: 26 pages, 8 figures, available online as uncorrected proof, Journal
of Materials Chemistry C (2016
EUVE J0425.6-5714: A Newly Discovered AM Herculis Star
We detected a new AM Her star serendipitously in a 25 day observation with
the EUVE satellite. A coherent period of 85.82 min is present in the EUVE Deep
Survey imager light curve of this source. A spectroscopic identification is
made with a 19th magnitude blue star that has H and He emission lines, and
broad cyclotron humps typical of a magnetic cataclysmic variable. A lower limit
to the polar magnetic field of 46 MG is estimated from the spacing of the
cyclotron harmonics. EUVE J0425.6-5714 is also detected in archival ROSAT HRI
observations spanning two months, and its stable and highly structured light
curve permits us to fit a coherent ephemeris linking the ROSAT and EUVE data
over a 1.3 yr gap. The derived period is 85.82107 +/- 0.00020 min, and the
ephemeris should be accurate to 0.1 cycles until the year 2005. A narrow but
partial X-ray eclipse suggests that this object belongs to the group of Am Her
stars whose viewing geometry is such that the accretion stream periodically
occults the soft X-ray emitting accretion spot on the surface of the white
dwarf. A non-detection of hard X-rays from ASCA observations that are
contemporaneous with the ROSAT HRI shows that the soft X-rays must dominate by
at least an order of magnitude, which is consistent with a known trend among AM
Her stars with large magnetic field. This object should not be confused with
the Seyfert galaxy 1H 0419-577 (= LB 1727), another X-ray/EUV source which lies
only 4' away, and was the principal target of these monitoring observations.Comment: 13 pages, 5 figures, to appear in PASP, Dec. 1998 issu
UBVRI photopolarimetry of the long period eclipsing AM Herculis binary V1309
We report simultaneous UBVRI photo-polarimetric observations of the long
period (7.98 h) AM Her binary V1309 Ori. The length and shape of the eclipse
ingress and egress varies from night to night. We suggest this is due to the
variation in the brightness of the accretion stream. By comparing the phases of
circular polarization zero-crossovers with previous observations, we confirm
that V1309 Ori is well synchronized, and find an upper limit of 0.002 percent
for the difference between the spin and orbital periods. We model the
polarimetry data using a model consisting of two cyclotron emission regions at
almost diametrically opposite locations, and centered at colatitude 35 (deg)
and 145 (deg) on the surface of the white dwarf. We also present archive X-ray
observations which show that the negatively polarised accretion region is X-ray
bright.Comment: 11 pages, 12 figures (2 colour), Fig1 and Fig 4 are in lower
resolution than in original paper, accepted for publication in Monthly
Notices of the Royal Astronomical Societ
- …
