37 research outputs found

    The Early Apoptotic DNA Fragmentation Targets a Small Number of Specific Open Chromatin Regions

    Get PDF
    We report here that early apoptotic DNA fragmentation, as obtained by using an entirely new approach, is the result of an attack at a small number of specific open chromatin regions of interphase nuclei. This was demonstrated as follows: (i) chicken liver was excised and kept in sterile tubes for 1 to 3 hours at 37°C; (ii) this induced apoptosis (possibly because of oxygen deprivation), as shown by the electrophoretic nucleosomal ladder produced by DNA preparations; (iii) low molecular-weight DNA fragments (∼200 bp) were cloned, sequenced, and shown to derive predominantly from genes and surrounding 100 kb regions; (iv) a few hundred cuts were produced, very often involving the same chromosomal sites; (v) at comparable DNA degradation levels, micrococcal nuclease (MNase) also showed a general preference for genes and surrounding regions, but MNase cuts were located at sites that were quite distinct from, and less specific than, those cut by apoptosis. In conclusion, the approach presented here, which is the mildest and least intrusive approach, identifies a preferred accessibility landscape in interphase chromatin

    Gene Transfer to Chicks Using Lentiviral Vectors Administered via the Embryonic Chorioallantoic Membrane

    Get PDF
    The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV), into the chorioallantoic membrane (CAM) of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP) or recombinant alpha-melanocyte-stimulating hormone (α-MSH) genes, driven by the cytomegalovirus (CMV) promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1)-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA), and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides

    Swine centromeric DNA repeats revealed by primed in situ (PRINS) labeling

    No full text
    1 tables 2 graph.International audienc

    Les môles hydatiformes partielles au Maroc : étude épidémiologique et clinique

    Full text link

    NLRP7 and the genetics of post-molar choriocarcinomas in Senegal

    No full text
    International audienceGestational choriocarcinomas are malignant tumors of trophoblastic cells that affect 5-25% of women with sporadic hydatidiform moles (HMs) depending on countries and studies. Nucleotide binding and oligomerization domain-like receptor protein 7 (NLRP7) is a major gene responsible for recurrent HMs and recently mutations in this gene have also been shown in 13% of women with sporadic, non-recurrent moles. To investigate the role of NLRP7 in the genetic susceptibility for the malignant degeneration of moles, we sequenced its 11 exons in 43 Senegalese patients with post-molar choriocarcinomas. We report the presence of three novel NLRP7 variants that were found only in patients but not in 100 controls from the Senegalese general population, 100 controls from the Tunisian general population, and 100 controls from the Canadian population. In addition, this analysis revealed significant differences in the frequencies of four non-synonymous NLRP7 variants between European and Senegalese controls with the biggest difference being for variant G487E present at a minor allele frequency of 3.5% in Europeans, 18.1% in Tunisians and 45.6% in Senegalese. Comparing human NLRP7 and its paralog, NLRP2, with their mammalian counterparts revealed that allele E at position 487 is most likely the ancestral allele that was acquired in Africa but driven to low frequencies in Europeans and Asians due to migration, population bottlenecks and selective pressures. This study is the first attempt to investigate the role of NLRP7 in choriocarcinomas and highlights the higher frequencies of NLRP7 variants in the general Senegalese and Tunisian populations both known to have higher frequencies of moles and choriocarcinomas
    corecore