27 research outputs found

    Solving the Jitter Problem in Microwave Compressed Ultrafast Electron Diffraction Instruments: Robust Sub-50 fs Cavity-Laser Phase Stabilization

    Full text link
    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction (UED) instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically and the long-term arrival time stability (>>10 hours) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization.Comment: Accepted for publication in Structural Dynamic

    The metallic transport of (TMTSF)_2X organic conductors close to the superconducting phase

    Full text link
    Comparing resistivity data of quasi-one dimensional superconductors (TMTSF)_2PF_6 and (TMTSF)_2ClO_4 along the least conducting c*-axis and along the high conductivity a -axis as a function of temperature and pressure, a low temperature regime is observed in which a unique scattering time governs transport along both directions of these anisotropic conductors. However, the pressure dependence of the anisotropy implies a large pressure dependence of the interlayer coupling. This is in agreement with the results of first-principles DFT calculations implying methyl group hyperconjugation in the TMTSF molecule. In this low temperature regime, both materials exhibit for rc a temperature dependence aT + bT^2. Taking into account the strong pressure dependence of the anisotropy, the T-linear rc is found to correlate with the suppression of the superconducting Tc, in close analogy with ra data. This work is revealing the domain of existence of the 3D coherent regime in the generic (TMTSF)_2X phase diagram and provides further support for the correlation between T-linear resistivity and superconductivity in non-conventional superconductors

    Towards a consistent picture for quasi-1D organic superconductors

    Full text link
    The electrical resistivity of the quasi-1D organic superconductor (TMTSF)2PF6 was recently measured at low temperature from the critical pressure needed to suppress the spin-density-wave state up to a pressure where superconductivity has almost disappeared. This data revealed a direct correlation between the onset of superconductivity at Tc and the strength of a non-Fermi-liquid linear term in the normal-state resistivity, going as r(T) = r0 + AT + BT2 at low temperature, so that A goes to 0 as Tc goes to 0. Here we show that the contribution of low-frequency antiferromagnetic fluctuations to the spin-lattice relaxation rate is also correlated with this non-Fermi-liquid term AT in the resistivity. These correlations suggest that anomalous scattering and pairing have a common origin, both rooted in the low-frequency antiferromagnetic fluctuations measured by NMR. A similar situation may also prevail in the recently-discovered iron-pnictide superconductors.Comment: ISCOM'09 proceedings to be published in Physica

    Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    Get PDF
    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s\pm within a single family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.Comment: 36 pages, 23 figures, 229 reference

    Manganese superoxide dismutase Ala-9Val polymorphism and risk of breast cancer in a population-based case–control study of African Americans and whites

    Get PDF
    INTRODUCTION: A polymorphism in the manganese superoxide dismutase (MnSOD) gene, Ala-9Val, has been examined in association with breast cancer risk in several epidemiologic studies. Results suggest that the Ala allele increases the risk of breast cancer and modifies the effects of environmental exposures that produce oxidative damage to DNA. METHODS: We examined the role of the MnSOD Ala-9Val polymorphism in a population-based case–control study of invasive and in situ breast cancer in North Carolina. Genotypes were evaluated for 2025 cases (760 African Americans and 1265 whites) and for 1812 controls (677 African Americans and 1135 whites). RESULTS: The odds ratio for MnSOD Ala/Ala versus any MnSOD Val genotypes was not elevated in African Americans (odds ratio = 0.9, 95% confidence interval = 0.7–1.2) or in whites (odds ratio = 1.0, 95% confidence interval = 0.8–1.2). Greater than additive joint effects were observed for the Ala/Ala genotype and smoking, radiation to the chest, and occupational exposure to ionizing radiation. Antagonism was observed between the Ala/Ala genotype and the use of nonsteroidal anti-inflammatory drugs. CONCLUSIONS: The MnSOD genotype may contribute to an increased risk of breast cancer in the presence of specific environmental exposures. These results provide further evidence for the importance of reactive oxygen species and of oxidative DNA damage in the etiology of breast cancer
    corecore