597 research outputs found

    Parity forbidden excitations of Sr2CuO2Cl2 revealed by optical third-harmonic spectroscopy

    Full text link
    We present the first study of nonlinear optical third harmonic generation in the strongly correlated charge-transfer insulator Sr2CuO2Cl2. For fundamental excitation in the near-infrared, the THG spectrum reveals a strongly resonant response for photon energies near 0.7 eV. Polarization analysis reveals this novel resonance to be only partially accounted for by three-photon excitation to the optical charge-transfer exciton, and indicates that an even-parity excitation at 2 eV, with a_1g symmetry, participates in the third harmonic susceptibility.Comment: Requires RevTeX v4.0beta

    Collective oscillations driven by correlation in the nonlinear optical regime

    Full text link
    We present an analytical and numerical study of the coherent exciton polarization including exciton-exciton correlation. The time evolution after excitation with ultrashort optical pulses can be divided into a slowly varying polarization component and novel ultrafast collective modes. The frequency and damping of the collective modes are determined by the high-frequency properties of the retarded two-exciton correlation function, which includes Coulomb effects beyond the mean-field approximation. The overall time evolution depends on the low-frequency spectral behavior. The collective mode, well separated from the slower coherent density evolution, manifests itself in the coherent emission of a resonantly excited excitonic system, as demonstrated numerically.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Radiative corrections to the excitonic molecule state in GaAs microcavities

    Full text link
    The optical properties of excitonic molecules (XXs) in GaAs-based quantum well microcavities (MCs) are studied, both theoretically and experimentally. We show that the radiative corrections to the XX state, the Lamb shift Ī”XXMC\Delta^{\rm MC}_{\rm XX} and radiative width Ī“XXMC\Gamma^{\rm MC}_{\rm XX}, are large, about 10āˆ’3010-30 % of the molecule binding energy ĻµXX\epsilon_{\rm XX}, and definitely cannot be neglected. The optics of excitonic molecules is dominated by the in-plane resonant dissociation of the molecules into outgoing 1Ī»\lambda-mode and 0Ī»\lambda-mode cavity polaritons. The later decay channel, ``excitonic molecule ā†’\to 0Ī»\lambda-mode polariton + 0Ī»\lambda-mode polariton'', deals with the short-wavelength MC polaritons invisible in standard optical experiments, i.e., refers to ``hidden'' optics of microcavities. By using transient four-wave mixing and pump-probe spectroscopies, we infer that the radiative width, associated with excitonic molecules of the binding energy ĻµXXā‰ƒ0.9āˆ’1.1\epsilon_{\rm XX} \simeq 0.9-1.1 meV, is Ī“XXMCā‰ƒ0.2āˆ’0.3\Gamma^{\rm MC}_{\rm XX} \simeq 0.2-0.3 meV in the microcavities and Ī“XXQWā‰ƒ0.1\Gamma^{\rm QW}_{\rm XX} \simeq 0.1 meV in a reference GaAs single quantum well (QW). We show that for our high-quality quasi-two-dimensional nanostructures the T2=2T1T_2 = 2 T_1 limit, relevant to the XX states, holds at temperatures below 10 K, and that the bipolariton model of excitonic molecules explains quantitatively and self-consistently the measured XX radiative widths. We also find and characterize two critical points in the dependence of the radiative corrections against the microcavity detuning, and propose to use the critical points for high-precision measurements of the molecule bindingenergy and microcavity Rabi splitting.Comment: 16 pages, 11 figures, accepted for publication in Phys. Rev.

    Proportional Relations Between Systolic, Diastolic and Mean Pulmonary Artery Pressure are Explained by Vascular Properties

    Get PDF
    Recently, it was shown that proportional relationships exist between systolic, diastolic and mean pulmonary artery pressure (Psys, Pdia and Pmean) and that they are maintained under various conditions in both health and disease. An arterial-ventricular interaction model was used to study the contribution of model parameters to the ratios Psys/Pmean, and Pdia/Pmean. The heart was modeled by a time-varying elastance function, and the arterial system by a three-element windkessel model consisting of peripheral resistance, Rp, arterial compliance Ca, and pulmonary artery characteristic impedance Z0. Baseline model parameters were estimated in control subjects and compared to values estimated in patients with pulmonary hypertension. Results indicate that experimentally derived ratios Psys/Pmean and Pdia/Pmean could be accurately reproduced using our model (1.59 and 0.61 vs. 1.55 and 0.64, respectively). Sensitivity analysis showed that the (empirical) constancy of Psys/Pmean and Pdia/Pmean was primarily based on the inverse hyperbolic relation between total vascular resistance (RT; calculated as RpĀ +Ā Z0) and Ca, (i.e. constant RTCa product). Of the cardiac parameters, only heart rate affected the pressure ratios, but the contribution was small. Therefore, we conclude that proportional relations between systolic, diastolic and mean pulmonary artery pressure result from the constancy of RTCa thus from pulmonary arterial properties, with only little influence of heart rate
    • ā€¦
    corecore