997 research outputs found

    Critical Conductance of a Mesoscopic System: Interplay of the Spectral and Eigenfunction Correlations at the Metal-Insulator Transition

    Full text link
    We study the system-size dependence of the averaged critical conductance g(L)g(L) at the Anderson transition. We have: (i) related the correction δg(L)=g()g(L)Ly\delta g(L)=g(\infty)-g(L)\propto L^{-y} to the spectral correlations; (ii) expressed δg(L)\delta g(L) in terms of the quantum return probability; (iii) argued that y=ηy=\eta -- the critical exponent of eigenfunction correlations. Experimental implications are discussed.Comment: minor changes, to be published in PR

    Spin Freezing in Geometrically Frustrated Antiferromagnets with Weak Disorder

    Full text link
    We investigate the consequences for geometrically frustrated antiferromagnets of weak disorder in the strength of exchange interactions. Taking as a model the classical Heisenberg antiferromagnet with nearest neighbour exchange on the pyrochlore lattice, we examine low-temperature behaviour. We show that random exchange generates long-range effective interactions within the extensively degenerate ground states of the clean system. Using Monte Carlo simulations, we find a spin glass transition at a temperature set by the disorder strength. Disorder of this type, which is generated by random strains in the presence of magnetoelastic coupling, may account for the spin freezing observed in many geometrically frustrated magnets.Comment: 4 pages, 5 figure

    A Note on Wetting Transition for Gradient Fields

    Get PDF
    We prove existence of a wetting transition for two types of gradient fields: 1) Continuous SOS models in any dimension and 2) Massless Gaussian model in two dimensions. Combined with a recent result showing the absence of such a transition for Gaussian models above two dimensions by Bolthausen et al, this shows in particular that absolute-value and quadratic interactions can give rise to completely different behaviors.Comment: 6 pages, latex2

    Emergent SO(5)SO(5) Symmetry at the N\'eel to Valence-Bond-Solid Transition

    Get PDF
    We show numerically that the `deconfined' quantum critical point between the N\'eel antiferromagnet and the columnar valence-bond-solid, for a square lattice of spin-1/2s, has an emergent SO(5)SO(5) symmetry. This symmetry allows the N\'eel vector and the valence-bond-solid order parameter to be rotated into each other. It is a remarkable 2+1-dimensional analogue of the SO(4)=[SU(2)×SU(2)]/Z2SO(4)= [SU(2)\times SU(2)]/Z_2 symmetry that appears in the scaling limit for the spin-1/2 Heisenberg chain. The emergent SO(5)SO(5) is strong evidence that the phase transition in the 2+1D system is truly continuous, despite the violations of finite-size scaling observed previously in this problem. It also implies surprising relations between correlation functions at the transition. The symmetry enhancement is expected to apply generally to the critical two-component Abelian Higgs model (non-compact CP1CP^1 model). The result indicates that in three dimensions there is an SO(5)SO(5)-symmetric conformal field theory which has no relevant singlet operators, so is radically different to conventional Wilson-Fisher-type conformal field theories.Comment: 4+epsilon pages, 6 figure

    Magnetic charge and ordering in kagome spin ice

    Full text link
    We present a numerical study of magnetic ordering in spin ice on kagome, a two-dimensional lattice of corner-sharing triangles. The magnet has six ground states and the ordering occurs in two stages, as one might expect for a six-state clock model. In spin ice with short-range interactions up to second neighbors, there is an intermediate critical phase separated from the paramagnetic and ordered phases by Kosterlitz-Thouless transitions. In dipolar spin ice, the intermediate phase has long-range order of staggered magnetic charges. The high and low-temperature phase transitions are of the Ising and 3-state Potts universality classes, respectively. Freeze-out of defects in the charge order produces a very large spin correlation length in the intermediate phase. As a result of that, the lower-temperature transition appears to be of the Kosterlitz-Thouless type.Comment: 20 pages, 12 figures, accepted version with minor change

    Length Distributions in Loop Soups

    Full text link
    Statistical lattice ensembles of loops in three or more dimensions typically have phases in which the longest loops fill a finite fraction of the system. In such phases it is natural to ask about the distribution of loop lengths. We show how to calculate moments of these distributions using CPn1CP^{n-1} or RPn1RP^{n-1} and O(n) σ\sigma models together with replica techniques. The resulting joint length distribution for macroscopic loops is Poisson-Dirichlet with a parameter θ\theta fixed by the loop fugacity and by symmetries of the ensemble. We also discuss features of the length distribution for shorter loops, and use numerical simulations to test and illustrate our conclusions.Comment: 4.5 page

    Deconfined Quantum Criticality, Scaling Violations, and Classical Loop Models

    Get PDF
    Numerical studies of the N\'eel to valence-bond solid phase transition in 2D quantum antiferromagnets give strong evidence for the remarkable scenario of deconfined criticality, but display strong violations of finite-size scaling that are not yet understood. We show how to realise the universal physics of the Neel-VBS transition in a 3D classical loop model (this includes the interference effect that suppresses N\'eel hedgehogs). We use this model to simulate unprecedentedly large systems (of size L512L\leq 512). Our results are compatible with a direct continuous transition at which both order parameters are critical, and we do not see conventional signs of first-order behaviour. However, we find that the scaling violations are stronger than previously realised and are incompatible with conventional finite-size scaling over the size range studied, even if allowance is made for a weakly/marginally irrelevant scaling variable. In particular, different determinations of the anomalous dimensions ηVBS\eta_\text{VBS} and ηNeˊel\eta_\text{N\'eel} yield very different results. The assumption of conventional finite-size scaling gives estimates which drift to negative values at large LL, in violation of unitarity bounds. In contrast, the behaviour of correlators on scales much smaller than LL is consistent with large positive anomalous dimensions. Barring an unexpected reversal in behaviour at still larger sizes, this implies that the transition, if continuous, must show unconventional finite-size scaling, e.g. from a dangerously irrelevant scaling variable. Another possibility is an anomalously weak first-order transition. By analysing the renormalisation group flows for the non-compact CPn1CP^{n-1} model (nn-component Abelian Higgs model) between two and four dimensions, we give the simplest scenario by which an anomalously weak first-order transition can arise without fine-tuning of the Hamiltonian.Comment: 20 pages, 19 figure

    Field evolution of the magnetic structures in Er2_2Ti2_2O7_7 through the critical point

    Full text link
    We have measured neutron diffraction patterns in a single crystal sample of the pyrochlore compound Er2_2Ti2_2O7_7 in the antiferromagnetic phase (T=0.3\,K), as a function of the magnetic field, up to 6\,T, applied along the [110] direction. We determine all the characteristics of the magnetic structure throughout the quantum critical point at HcH_c=2\,T. As a main result, all Er moments align along the field at HcH_c and their values reach a minimum. Using a four-sublattice self-consistent calculation, we show that the evolution of the magnetic structure and the value of the critical field are rather well reproduced using the same anisotropic exchange tensor as that accounting for the local paramagnetic susceptibility. In contrast, an isotropic exchange tensor does not match the moment variations through the critical point. The model also accounts semi-quantitatively for other experimental data previously measured, such as the field dependence of the heat capacity, energy of the dispersionless inelastic modes and transition temperature.Comment: 7 pages; 8 figure

    3D loop models and the CP^{n-1} sigma model

    Full text link
    Many statistical mechanics problems can be framed in terms of random curves; we consider a class of three-dimensional loop models that are prototypes for such ensembles. The models show transitions between phases with infinite loops and short-loop phases. We map them to CPn1CP^{n-1} sigma models, where nn is the loop fugacity. Using Monte Carlo simulations, we find continuous transitions for n=1,2,3n=1,2,3, and first order transitions for n5n\geq 5. The results are relevant to line defects in random media, as well as to Anderson localization and (2+1)(2+1)-dimensional quantum magnets.Comment: Published versio

    Spin Dynamics in Pyrochlore Heisenberg Antiferromagnets

    Full text link
    We study the low temperature dynamics of the classical Heisenberg antiferromagnet with nearest neighbour interactions on the pyrochlore lattice. We present extensive results for the wavevector and frequency dependence of the dynamical structure factor, obtained from simulations of the precessional dynamics. We also construct a solvable stochastic model for dynamics with conserved magnetisation, which accurately reproduces most features of the precessional results. Spin correlations relax at a rate independent of wavevector and proportional to temperature.Comment: 4 pages, 4 figures, submitted to PR
    corecore