398 research outputs found

    Do Kidneys Need Blood?

    Get PDF

    Quantum Neural Network Based Machine Translator for Hindi to English

    Get PDF
    This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze the effectiveness of the proposed approach, 2600 sentences have been evaluated during simulation and evaluation. The accuracy achieved on BLEU score is 0.7502, on NIST score is 6.5773, on ROUGE-L score is 0.9233, and on METEOR score is 0.5456, which is significantly higher in comparison with Google Translation and Bing Translation for Hindi to English Machine Translation

    Unraveling the Mechanisms of Cutaneous Graft-Versus-Host Disease

    Get PDF
    The skin is the most common target organ affected by graft-versus-host disease (GVHD), with severity and response to therapy representing important predictors of patient survival. Although many of the initiating events in GVHD pathogenesis have been defined, less is known about why treatment resistance occurs or why there is often a permanent failure to restore tissue homeostasis. Emerging data suggest that the unique immune microenvironment in the skin is responsible for defining location- and context-specific mechanisms of injury that are distinct from those involved in other target organs. In this review, we address recent advances in our understanding of GVHD biology in the skin and outline the new research themes that will ultimately enable design of precision therapies

    B\Bbar mixing with the bulk fields in the Randall-Sundrum model

    Full text link
    We calculate the B\Bbar mixing in the Randall-Sundrum bulk model. In this model, all the Standard Model fields except the Higgs can reside in the bulk. Two suggestive models of "mixed" and "relaxed" scenarios are considered. We find that the enhancement of the loop function is 0.51% for the "relaxed" and 1.07% for the "mixed" scenario when the first 4th KK modes are included, for a bulk fermion mass parameter ν=0.3\nu=-0.3.Comment: REVTEX, 20 pages, 3 figure

    Memory in a magnetic nanoparticle system: polydispersity and interaction effects

    Get PDF
    We report here a theory of relaxation of single domain magnetic nanoparticles, appropriate for analyzing measurements of Mossbauer spectra, magnetization response, and hysteretic coercivity. Our special focus of attention in the theoretical formulation is the presence of dipolar interaction between the magnetic particles. We discuss in detail the effect of interaction as well as particle size distribution on the measured relaxation spectra and irreversible, nonequilibrium magnetization response in field-cooled and zero-field-cooled situations. Some of the memory effects, similar to those seen in spin glass systems, may be put to important device applications by tuning the interaction and the particle size

    B-physics constraints on baryon number violating couplings: grand unification or R-parity violation

    Get PDF
    We investigate the role that baryon number violating interactions may play in BB phenomenology. Present in various grand unified theories, supersymmetric theories with R-parity violation and composite models, a diquark state could be quite light. Using the data on B decays as well as BBˉB - {\bar B} mixing, we find strong constraints on the couplings that such a light diquark state may have with the Standard Model quarks.Comment: 19 pages, latex, no figures, 13 tables include

    Graft-versus-host disease reduces lymph node display of tissue-restricted self-antigens and promotes autoimmunity

    Get PDF
    Acute graft-versus-host disease (GVHD) is initially triggered by alloreactive T cells, which damage peripheral tissues and lymphoid organs. Subsequent transition to chronic GVHD involves the emergence of autoimmunity although the underlying mechanisms driving this process are unclear. Here, we tested the hypothesis that acute GVHD blocks peripheral tolerance of autoreactive T cells by impairing lymph node (LN) display of peripheral tissue-restricted antigens (PTA). At the initiation of GVHD, LN fibroblastic reticular cells (FRC) rapidly reduced expression of genes regulated by DEAF1, an Autoimmune Regulator-like transcription factor required for intra-nodal expression of PTA. Subsequently, GVHD led to the selective elimination of the FRC population, and blocked the repair pathways required for its regeneration. We used a transgenic mouse model to show that the loss of presentation of an intestinal PTA by FRC during GVHD resulted in the activation of auto-aggressive T cells and gut injury. Finally, we show that FRC normally expressed a unique PTA gene signature that was highly enriched for genes expressed in the target organs affected by chronic GVHD. In conclusion, acute GVHD damages and prevents repair of the FRC network, thus disabling an essential platform for purging auto-reactive T cells from the repertoire
    corecore