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We report here a theory of relaxation of single domain magnetic nanoparticles, appropriate for analyzing
measurements of Mössbauer spectra, magnetization response, and hysteretic coercivity. Our special focus of
attention in the theoretical formulation is the presence of dipolar interaction between the magnetic particles. We
discuss in detail the effect of interaction as well as particle size distribution on the measured relaxation spectra
and irreversible, nonequilibrium magnetization response in field-cooled and zero-field-cooled situations. Some
of the memory effects, similar to those seen in spin glass systems, may be put to important device applications
by tuning the interaction and the particle size.
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I. INTRODUCTION

The subject of how a bulk magnetic specimen acquires a
single domain structure and exhibits magnetic viscosity due
to Néel relaxation, when its size is reduced, is an old one.1–3

When the relaxation timet is smaller than the measurement
time, the specimen shows superparamagnetic behavior
whereas in the opposite limit, relaxation is arrested. The
crossover mark, derived from the temperature dependence of
t, yields the concept of “blocking temperature”sTBd. When
T,TB, one has a frozen moment, whereas forT.TB, one
sees magnetic viscosity. Thus single-domain magnetic par-
ticles have been a happy hunting ground for studying non-
equilibrium phenomena, characterized by irreversibility, hys-
teresis and other memory effects.

In recent times this subject has attracted a great deal of
attention in view of the heightened interest in nanoscience
and magnetic memory devices. As it turns out, it is not just
the temperatureT which can be used as a control parameter
but even the mean size and the distance between the particles
can be profitably tuned because of the exponential depen-
dence oft on the volumesVd of the particle.4–10 Thus poly-
dispersity leads to a distribution of relaxation times,11,12

those larger than the measurement time yielding “frozen”
behavior, and those shorter giving rise to “magnetic
viscosity.”9,10 A given sample then displays strong memory
effects, which are reported here. Our results are based on the
measurements of temperature-dependent magnetization dur-
ing cooling and heating cycles. These memory effects may
have important device applications in the future.6 In this pa-
per we report the theory of relaxation, relevant to Mössbauer,
magnetization and coercivity measurements, and back up our
theory results with qualitative comparison with our experi-
mental data.

The system we employ for our experimental investigation
is nickel ferrite particlessNiFe2O4d embedded in a host non-
magnetic SiO2 matrix. We prepared the following two speci-
men samples by using the sol-gel technique:13 Sample A,
which containss35%d NiFe2O4 sby volumed, making pos-
sible a weak dipolar interaction between the magnetic par-

ticles, and Sample B, which containss15%d NiFe2O4, be-
lieved to yield a noninteracting case. The phase of the
samples was identified by x-ray diffraction.14 Both x-ray
photographs and TEM micrographs suggest that the mean
interparticle separation is 5 nm for specimen A and is 15 nm
for specimen B, whereas for each specimen the average par-
ticle radius is<3 nm.

With the preceding background the paper is organized as
follows. In Sec. II we review the basic relaxation theory of
single-domain magnetic particles and specialize to the case
of large uniaxial anisotropyvis-a-vis the thermal energy. In
this limit the relaxation dynamics can be described in terms
of a two-state rate theory. We motivate next a mean field
theory in order to incorporate aweakdipolar interaction be-
tween the magnetic particles. The assumption of the weak-
ness of the dipolar coupling is checked by the measured hys-
teresis loop. The theory developed in Sec. II is employed to
interpret the Mössbauer data for specimens A and B, pre-
sented in Sec. III. The main point of Sec. III is to underscore
the issue that even though the interaction does not lead to
magnetic order, it can slow down relaxation, even at the
highestsroomd temperature of measurement. Section IV is
the core of the paper in which we demonstrate how memory
effects can arise due to polydispersity of the sample and how
these effects can be tamed by the effects of interaction. The
observed memory effects are similar to those reported in Ref.
11. But unlike Ref. 11 which attributes the data to spin glass
interactions, our interpretation is quite different in that the
effects simply occur due to a superposition of different re-
sponse functions with at least one short and one long relax-
ation times compared to the observation time. Finally, in Sec.
V we present our main conclusions about the significance of
the reported results.

II. RELAXATION THEORY

We assume for the sake of simplicity that the anisotropy,
responsible for single-domain behavior of the magnetic
nanoparticle is uniaxial, governed by the energy,
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EsFd = VK sin2 F. s1d

In Eq. s1d, V is the volume of the particle,K is a parameter
referred to in the literature as the anisotropy energy, andF is
the angle between the anisotropy axis and the direction of the
“giant” magnetic moment of the single-domain particle. Be-
cause of thermal fluctuations the magnetic moment under-
goes rotational Brownian motion over an anisotropy barrier
in Eq. s1d, in whichFstd is a continuous stochastic process as
a function of the timet.15 However it turns out that ifVK
@KBT, KB being the Boltzmann constant andT is the abso-
lute temperature, the magnetic moment is mostly locked in
two orientations, corresponding toF=0 and F=p, with
slow relaxation between the two configurations. Thus we are
in the so-called “Ising” limit in whichFstd may be viewed as
a dichotomic Markov process, in which it jumps at random
between the angles 0 andp at a rate governed by the
Arrhenius-Kramers formula,

l0→p = lp→0 = l0expS−
KV

KBT
D , s2d

where l0 is the “attempt” frequency. In what follows we
restrict our discussion to the Ising case wherein the magnetic
moment vector points either parallel or antiparallel to the
anisotropy axis.

We now discuss the effect of interaction which, for the
present system at hand in which the magnetic particles are
embedded in a dielectric hostsSiO2d matrix, is surmised to
be of dipolar in nature. It is well known that dipolar interac-
tions, being long-ranged, anisotropic and alternating in the
sign of interaction, can indeed lead to very complex mag-
netic order.16 However, our dcM-H measurement, exhibited
in Fig. 1, indicates that even for specimen A for which the
dipolar interaction is relevant, there is no shift of the hyster-
esis loop, thereby implying that the bulk magnetization, for
the zero applied field, iszero. Our interpretation is that be-
cause of the largeness of anisotropy energy as mentioned
above, we are operating in the Ising limit of the dipolar in-
teraction, for which the local field, in the mean field sense,
points parallel or antiparallel to the anisotropy axis, with

equal probability. The dipolar coupling can now be described
by its “truncated” form17

Hd−d = o
i j

gig j"
2s1 − 3 cos2ui jd

urWi j u3
mzimzj, s3d

wheregi andg j are the gyromagnetic ratio of theith and j th
particle, respectively,rWi j is the vector distance between the
“sites” at which the two magnetic particles are located,ui j is
the angle betweenrWi j and the anisotropy axis andmzi is the
sgiantd magnetic moment for theith nanoparticle along the
direction of anisotropy axissi.e., Zd. Given the fact thatm is
proportional to the volumeV of the particle, Eq.s3d can be
rewritten as

Hd−d = m2V2o
i j

gig j"
2s1 − 3 cos2ui jd

urWi j u3
cosFicosF j , s4d

wherem is the magnetic moment per unit volume andF has
the same definition as in Eq.s1d. The interaction in Eq.s4d,
along with that given in Eq.s1d, is quite complicated to treat
in detail. For the purpose of this paper we invoke a mean
field theory in which each magnetic nanoparticle is visual-
ized to be embedded in an effective medium which creates a
local magnetic field at its site. Thus in this approximation,
Hd−d is replaced by its mean fieldsMFd form

Hd−d
MF = g"m2V2cosFo

j

g j"
s1 − 3 cos2ui jd

urWi j u3
kcosF jl, s5d

wherein the angular bracketsk¯l represent a thermal aver-
age. Further, in accordance with our assumption about the
largeness of the anisotropy energy, cosF can be replaced by
a two-state Ising variables,

Hd−d
MF = g"m2V2so

j

g j"
s1 − 3 cos2ui jd

urWi j u3
ks jl, s6d

In line with this approximation each particle can be viewed
to be subjected to a local magnetic fieldH such that

Hd−d
MF = mVsH, s7d

H = mLVksl, s8d

whereL is a parameter that subsumes all the other constants.
Note that we have dropped the suffixj on s, implying that
we consider the embedding medium to be homogeneous.
Within the proposed self-consistent mean field theory,H can
be expressed as

H = mLV tanhSmVH

KBT
D . s9d

Note that Eq.s9d admits both positive and negative solutions
for H, in accordance with our discussion preceding Eq.s3d.
Further, within the present approximation in whichF is re-
stricted to the value 0 andp, the anisotropy energy in Eq.s1d
does not figure in the expression forH. We now turn our
attention to relaxation kinetics. The dichotomic Markov pro-
cess, mentioned in the paragraph preceding Eqs.s3d ands4d,
yields the following set of rate equations for the number of

FIG. 1. Room temperature dcM-H measurement of interacting
sample A and noninteracting sample B. The solid lines are drawn
through the experimental points, indicated by dots.
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magnetic particles with a specific orientation of their magne-
tization:

d

dt
n0std = − l0→pn0std + lp→0npstd, s10d

d

dt
npstd = l0→pn0std − lp→0npstd, s11d

where the subscripts onn indicate the two allowed values of
F. Solving Eqs.s10d and s11d, we may derive for the time-
dependent magnetizationMstd:

Mstd ; Vmfn0std − npstdg

= Mst = 0dexps− l̄td + mVN
Dl

l̄
f1 − exps− l̄tdg.

s12d

In Eq. s12d,

N = n0 + np, s13d

which is a constant,

l̄ = l0→p + lp→0 s14d

and

Dl = lp→0 − l0→p. s15d

The expressions for the rate constants necessitate now a gen-
eralization of Eq.s2d in view of the dipolar interaction, and
are given by

l0→p = l0expS−
VsK + Hmd

KBT
D , s16d

lp→0 = l0expS−
VsK − Hmd

KBT
D , s17d

wherein we have neglected terms of orderH2/K2. We con-
clude this section by reiterating a few remarks on the theory
presented here. First, we have assumed at the outset that the
anisotropy is large, a very good assumption in the context we
believe, which has allowed us to approximate a continuous
stochastic process by its discrete version. The anisotropy bar-
rier does not appear in equilibrium propertiesfcf. Eq. s9dg
but does strongly influence relaxation kineticsfcf. Eqs.s16d
and s17dg. Our second remark concerns the dipolar interac-
tion, which is treated in mean field theory. This interaction,
though weak, has a significant contribution to the relaxation
effectsfcf. Eqs.s16d ands17dg. In particular, and in the con-
text of magnetic nanoparticles, the relaxation rates acquire a
V2-dependent term in the exponentfsee also Eqs.s8d ands9dg
in addition to an effective temperature-dependent tan-
hyperbolic term. The effect of this contribution is found to be
of profound importance in interpreting our data on irrevers-
ible magnetization, as presented in Sec. IV below.

III. INTERACTION EFFECT ON MÖSSBAUER SPECTRA

In this section we present our experimental results on
Mössbauer spectroscopy and interpret them in the light of the

theory given in Sec. II. We will show that the dipolar inter-
action, though weak, yields a static-looking Mössbauer spec-
tra, because of a time-window effect. The measurement tech-
nique is based on the absorption of a 14.4 keV gamma ray
transition from the excited nuclear level of angular momen-
tum I = 3

2 to the ground level ofI = 1
2.18 In a static magnetic

field the levels are split, giving rise to the characteristic six-
finger pattern. On the other hand, when the field fluctuates in
time rapidly around a zero mean the spectrum collapses to a
single line, as though there were no magnetic field. It is
important at the outset to grasp what exactly the measure-
ment time is as far as Mössbauer spectroscopy is
concerned.19 It might seem it is the nuclear lifetimetN at first
sight, but in point of fact the measurement time-window is
provided by the inverse of the Larmor frequenciessassoci-
ated with the Zeeman interactiond that determine the line
positions of the six-finger pattern.20 When the frequencies
are larger than the relaxation ratet one sees a static pattern
whereas in the opposite limit the pattern collapses to a single
line.

The observed Mössbauer spectra as a function of tempera-
ture for specimens A and B are shown in Figs. 2 and 3,
respectively.21 From the room temperature data in Fig. 2 it is
evident that the effect of interaction slows down relaxation
even at the highestT. We interpret the data based on the
following stochastic model Hamiltonian:22

Hstd = − mNgsIdIzhstd, s18d

wheremN is the nuclear magneton,gsId is the level-specific
g-factor depending on whether the nucleus is in the excited
or ground level,Iz is the component of the nuclear angular
momentum along theZ-axis, that is determined by the aniso-
tropy direction of the single-domain particle, andhstd is a
local field at the nucleus that jumps about stochastically in
time.

The local fieldhstd at the nucleus is of course produced by
the magnetization of the particle which, for reasons men-
tioned earlier, is taken to jump between ±h0, where h0 is
proportional toH, at the rates given by Eqs.s16d and s17d.
The Mössbauer line shape as a function of frequencyv is
given by22

Isvd =
1

p
Reo

m0m1

ukI0m0uAuI1m1lu2E dVfsVd

3 3S− iv +
G

2
D +

mN
2h0

2sg0m0 − g1m1d2

S− iv +
G

2
D + l̄sVd/24

−1

.

s19d

In Eq. s19d A is the nuclear transition operator, the matrix
elements of which are given by Clebsch-Gordan coefficients,
G is the natural linewidth of the excited nuclear level,g0sg1d
is theg-factor in the groundsexcitedd level andl̄sVd is the
volume-dependent relaxation rate as given in Eq.s14d. The
integral overV incorporates the particle size distribution with
the aid of a probability functionfsVd,8,23

MEMORY IN A MAGNETIC NANOPARTICLE SYSTEM: … PHYSICAL REVIEW B 71, 054401s2005d

054401-3



fsyd =
1

ysÎ2p
exp3−

Slog
y

y0
D2

2s2 4 , s20d

where y is the particle diameter,y0 is the most probable
diameter, ands controls the width of the distribution. For
numerical calculation we have takeny0=3, s=1.8, KV
=10−13 erg, and m=100 emu/g. From the fitting of the
Mössbauer sepctrasFigs. 2 and 3d the values of the relax-
ation ratel are computed, which are reproduced in Tables I
and II. Since there is a volume distributionfcf. Eq. s20dg
there will also be a distribution of the relaxation ratel. In
Figures 2 and 3 those values ofl which correspond to fast
relaxation yield a broad central line, which provides a back-

ground to the split spectra. This background is eliminated in
our fitting procedure and what appears in Tables I and II is an
estimatedl, from Eq.s19d by ignoring fsVd. As expected,l
for a given temperature is systematically smaller for the in-
teracting casessample Ad than for the noninteracting case
ssample Bd in view of the quadratic volume dependence in
the exponent, as mentioned at the end of Sec. II. Further, the
strong volume dependence makesl rather insensitive to tem-
perature variations below 200 K for the interacting sample
sAd scf. Table IId.

Coming back to Fig. 2, we note that the spectra are in-
dicative of the presence of an internal magnetic field which
is apparently static. We surmise that this internal field has its
origin in the dipole-dipole interaction between magnetic par-
ticles, when their mean separation is around 5 nm. As we
discussed earlier in Sec. II and at the end of the paragraph
above, the observed six-finger structure throughout the entire
temperature regime is not due to any spontaneous magneti-
zation but a time-window effect as borne out in Tables I and
II. This happens due to the fact that the mean dipolar field, as
mentioned earlier, is equally probable to point along +Z and
−Z direction and keeps fluctuating between these two possi-
bilities.

Given this background to our theoretical analysis, the in-
terpretation of Mössbauer spectra as shown in Figs. 2 and 3,
is as follows. At any given point in time, half of the Möss-
bauer nuclei find their “local” magnetic field pointing along
F=0 while the other half will see the local field pointing

TABLE I. Fitted values of the relaxation ratel obtained from
the Mössbauer spectra as a function of temperature for the nonin-
teracting sample B.

TemperaturesKd l smm/sd Error s± mm/sd

21 2.44 0.22

125 2.96 0.41

200 10.62 0.53

250 10.84 0.60

FIG. 2. Temperature-dependent Mössbauer
spectra of sample A, dots are the experimental
points and solid lines are the curves fitted from
our model,sad room temperature,sbd 220 K, scd
100 K, sdd 20 K.

FIG. 3. Temperature-dependent Mössbauer spectra of sample B,
dots are the experimental points and solid lines are the curves fitted
from our model,sad room temperature,sbd 250 K, scd 200 K, sdd
125 K, sed 50 K, sfd 20 K.
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alongF=p. Both these orientations of the local field would
of course yield an identical six-finger pattern, because the
nucleus as an observer cannot distinguish betweenF=0 and
F=p, provided the local field is static, within the Mössbauer
measurement time. That of course is determined by the tem-
peratureT and the mean dipolar strength parametrized byL.
These two quantities determine the rates of relaxation of the
local dipolar field, as indicated in Eqs.s16d ands17d. Hence
for sample B, for which the dipolar field is negligible, sem-
blance of a six-finger pattern shows up only at the lowestT
when relaxation slows down, whereas for sample A, the di-
polar coupling keeps the relaxation slow within the nuclear
time-window, at all temperatures.

IV. POLYDISPERSITY-LINKED MEMORY EFFECTS

Having discussed the effect of slowing down of relaxation
due to the weak interaction between magnetic nanoparticles,
both in terms of theory in Sec. II, corroborated by Mössbauer
experiments in Sec. III, we focus our attention to another
important attribute, viz., the volume-distribution of the nano-
particles. We show that such a distribution leads to striking
memory effects in our low-temperature dc magnetization
measurements. Surprisingly the dipolar interaction, the sub-
ject of our discussion in Secs. II and III, suppresses the
memory effects.

The magnetization measurements, are carried out in ac-
cordance with the following cooling and heating protocol. At
T=300 K sT=T`d, a small magnetic fieldsh=50 Oed is ap-
plied and the magnetizationsMd measured. Keeping the field
on, the temperaturesTd is lowered continuously at a steady
rate toTn andM is simultaneously measured up to the tem-

peratureTn. Thus one obtainsM versusT in the cooling
regimesTnøTøT`d. At Tn the field is switched off and the
drop of M is monitored for severals<4d hours. Subse-
quently, the magnetic field isswitchedback on andMsTd
versusT is mapped in the cooling regimesTn−1øTøTnd. At
Tn−1 the field is switched off again and the process of mea-
surement repeated, until the lowest temperatureT0 is
reached. Thus, one obtains field-cooled response and zero-
field relaxation of the magnetization as a function of tem-
perature. At the end of the cooling cycle, atT0, the field is
turned on andMsTd monitored as the system is heated from
T0 throughTn−2, Tn−1, Tn and eventually toT`, the magnetic
field remaining on throughout. Our results are shown in Fig.
4, for sample A and sample B. The heating path surprisingly
shows wiggles inMsTd at all theT stepsTn−2, Tn−1, Tn where
h was earlier switched off during cooling, apparently retain-
ing a memory of the temperature steps at which the cooling
was arrested. One tantalizing aspect of our results is that
memory effects are more prominent for sample B than for
sample A, although in the latter the average interparticle dis-
tance is smaller and hence the dipolar interaction non-
negligible. Recently Sunet al.11 have reported very similar
history dependent effects in the magnetization measurements
of a monolayer of sputtered permalloysNi81Fe19d clusters on
a SiO2 substrate. These authors attribute the disparate cool-
ing and heating histories to aging and concomitant memory
effects found in a spin glass phase.24 Spin glass transitions
are known to occur due to disorder and frustration in dilute
magnetic alloys that are characterized by a complicated free
energy landscape with deep valleys and barriers.25 Strongly
nonequilibrium memory dependent behavior ensues as a re-
sult of the system getting trapped in a deep valley such that
the relaxation timestd for deactivation becomes long com-
pared to experimental time scales of measurement.26

Our interpretation of the results shown in Fig. 4 is very
different from that of Ref. 11. We demonstrate below that the
observed phenomena arenot connected to complicated spin
glass type interactions but can be simply attributed to a su-
perposition of relaxation times, arising from particle size dis-
tribution, as it were innoninteractingsingle-domain mag-
netic particles. Experimentally it is known12 that nanoparticle
sizes are usually distributed according to a log-normal distri-
bution. However, we show below that the exact form of the
distribution is irrelevant for explaining the memory effect. In
fact, in order to keep the analysis simple and to obtain a clear

TABLE II. Fitted values of the relaxation ratel obtained from
the Mössbauer spectra as a function of temperature for the interact-
ing sample A.

TemperaturesKd l smm/sd Error s±mm/sd

20 1.36 0.18

100 1.34 0.12

200 1.36 0.10

250 1.74 0.07

300 2.05 0.11

FIG. 4. sColor onlined Experimental MsTd
curves during coolingss redd in a small mag-
netic field h=50 Oe and zero-field heatingsh
blackd for the sad interacting andsbd noninteract-
ing samples showing prominent memory effects.
A constant heating/cooling rate of 2 K/min was
maintained except at 60 K, 40 K, and 20 K where
the cooling was arrested for 4 h duration at each
temperature during which timeh was switched
off.
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understanding of the physics it is sufficient to take a sample
size distribution consisting of two delta function peaks so
that there are only two kinds of particles “large”svolumeV1d
and “small” V2. Correspondingly we have only two relax-
ation timest=t1 andt2 in our model, if we remember that
fcf. Eqs.s16d and s17dg,

tsVd ~ expF sKV ± mHVd
KBT

G . s21d

The interpretation of the observed results hinges on the
premise that the timet1 is much larger than the measurement
time while t2 is much smaller, at the lowest measured tem-
peraturesT0d. Both t1 andt2 are expected to be smaller than
the measurement time at the highest temperatureT`. There-
fore, in the intermediate temperature domainsT0øTøT`d,
the small particles equilibrate rapidly, thus showing super-
paramagnetic viscosity10 while the large particles are
“blocked.” This is observed in Fig. 5scd where we have plot-
ted computer simulations ofMsTd separately for the two sets
of interacting particles under the same cooling and heating
regimens. Here we choose the temperatureT* at whichh is
switched off such that the blocking temperatures8,9 corre-
sponding to the two different particle sizes flankT* . The
simulations are based on rate theory calculation for the time
dependent magnetization given in Sec. II. Whenh is zero,
both sets of particles relax toM =0. However, whenh is
turned on, particles 1 are blockedsM =0d while particles 2
show facile response. AsT is increased again,M for particles

2 decreases withT while M for particles 1 initially increases
before dropping off. The resultant graph is a superposition
fsee Fig. 5scdg of a monotonically decreasing curve and a
hump, thus producing a wiggle. This effect is seen only when
the temperature of arrest is in-between the two respective
blocking temperatures, in conformity with the findings of
Ref. 12. We have performed measurements on the same
system but now with increased interparticle separation
s.15 nmd fsee Fig. 4sbdg, the simulation results of which are
shown in Fig. 5sbd.

The resultant interaction effect due to dipole-dipole cou-
pling, not considered in Ref. 12, is also quite distinct from
the quenched-in disorder mediated interactions proposed in
Ref. 11. As described earlier the effect of interaction, within
a mean-field picture, is incorporated by adding a term pro-
portional toV2 in the exponent oftsVd fcf. Eqs.s8d ands9dg.
Thus, even small particlessV2d can now havet2 larger than
the measurement time. This becomes more prominent at
lower temperatures. Therefore, the blocking temperatures for
both particles 1 and 2 are now shifted to higherT, thereby
causing the wiggles to disappear. This is consistent with the
results of Fig. 4 which show that the memory effects are
stronger for the noninteracting particles. We conclude then
that the unexpected wiggles seen in the cooling and heating
cycles ofMsTd versusT have much less to do with interac-
tion effects but more to do with polydispersity of the sample.

How crucially does the nature of the particle size distri-
bution function affect the magnetization recovery during the
zero field heating cycle? In order to answer this question we
first quantify the memory effect by defining a parameter,

FIG. 5. sColor onlined SimulatedM sarbitrary
unitd vs T curves during coolingssolid blackd and
heating sdashed redd for the sad interacting and
sbd noninteracting cases: The curvescd shows the
various contributions to the total magnetization of
interacting sample A coming from thesid fast par-
ticles during the cooling cyclesblack solid lined,
sii d fast particles during the heating cyclesred
filled circled, siii d slow particles during the cool-
ing cycle smagenta dashed lined, and sivd slow
particles during the heating cyclesblue squared.
The theoretical curvessad–scd have been calcu-
lated using a double delta function distribution of
particle sizes. Curvesdd shows a plot of the re-
covery parameterR ssee textd as a function of the
widthssd of a Gaussian particle size distribution.
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R= QSUdM

dT
U

T=Tn

DdM

dT
, s22d

whereQsxd is the Heaviside step function. The parameterR
measures the positive slope of theMsTd curve during zero
field heating. We have calculatedR using a Gaussian size
distribution centered atV=V0 and with widths. Our results
for R are shown in Fig. 5sdd for a particular choice ofV0 as
a function ofs. We observe thatR increases with the width of
the distribution and saturates quickly. In this regime,R is
almost independent ofV0 and accordingly, the detailed na-
ture of the distribution. We conclude that the memory effects
will be best seen in samples with a dilute dispersion of par-
ticles but a very widesflatd distribution of sizes. Indeed in
this limit the relaxation is known to be prominently domi-
nated by magnetic viscosity characterized by a logarithmic
relaxation in time.11 Not surprisingly, a logarithmic relax-
ation has been observed in the experiments of Sunet al.
although the interpretation offered is different from ours.11

Our interpretation of theM vs T data is further substanti-
ated by our earlier reported resultssin Fig. 1d of hysteresis
measurements and thereby coercivity estimation for both the
interacting sample A and noninteracting sample B. Clearly,
for sample B the relaxation times are shorter than the mea-
surement time, at 300 K. Thus, there is no hysteresis loop
and the coercivitysmeasured by the width along the abscissa
on the zero-magnetization lined is also zero. On the other
hand, for sample A, we observe a nonzero coercivity even at
300 K due to the slowing down of relaxation because of the
presence of an additional term proportional toV2 in the ex-
ponent oftsVd as mentioned above.

Next we repeat the above measurements down to 4 K,
using a SQUID magnetometer. The coercivityshcd is plotted
as a function of temperaturesTd, in Fig. 6. Because relax-
ation slows down for both sample A and sample B,hc in-
creases with decrease ofT sFig. 6d. The coercivity of the
interacting sample A is larger than that noninteracting sample

B for temperatures greater than 25 K. However, atT=25 K a
surprising crossover is detected, where the coercivity for
sample B shoots above that for sample A. We suggest that
the reason for this behavior is that the termH in the exponent
of tsVd in Eq. s21d is replaced byh+dH, where h is the
applied field and the mean fielddH arises from interaction
fcf. Eq. s9dg:

dH = mVL tanhSmVsh + dHd
KBT

D . s23d

The tanh term augments theV2 term in the exponent oftsVd
below 25 K, making the larger particles relax so slowly that
they do not respond toH at all. Therefore, the larger particles
are “frozen out” from further consideration, making the
mean relaxation time in the interacting case even smaller
than that for the noninteracting case. This somewhat nonin-
tuitive conclusion is further confirmed by our simulated co-
ercivity computation, shown in Fig. 6sinsetd.

To verify our argument further we perform a separate set
of experiments on both samples A and B as follows. We
field-cool the samples down to 10 K from 300 K in the
presence ofh=100 Oe. At 10 K the magnetic field is
switched off and the relaxation of the magnetization mea-
sured. We find that the average relaxation time obtained by
forcing an exponential fit to our data of sample A is 100 min
and that of sample B is 25 min We then heat the samples to
300 K, and cool it back down to 10 K at zero magnetic field.
At 10 K we switch on the magnetic field and wait for 2 h.
The magnetic field is then switched off and the magnetiza-
tion measured. The relaxation time of sample B remains 25
min but the relaxation time of sample A decreases to 30 min.
This result is consistent with the reasoning described in the
above paragraph. Therefore, for the low-temperature inter-
acting system, larger particles are rendered magnetically in-
active. This result is a dramatic illustration of the interplay of
polydispersity and interaction effect in determining the relax-
ation behavior of magnetic nanoparticles which is indeed the
underpinning theme of the present paper.

V. SUMMARY AND CONCLUSION

The revival of interest in single-domain magnetic par-
ticles due to the resurgence of nanoscience and technology
has spurred us to examine in detail the underlying relaxation
phenomena. We have presented here both theoretical and ex-
perimental results and their intercomparison. Our main focus
has been to analyze how the relaxation and response behav-
ior of magnetic nanoparticles is influenced by their mutual
interaction as well as polydispersity of particle sizes. The
theory presented in Sec. II is based on the simplifying as-
sumption of large uniaxial anisotropy energy vis-a-vis the
thermal energy. A further simplifying assumption has been
invoked in treating the interaction due to dipolar coupling
between magnetic nanoparticles within a mean field approxi-
mation. A more complete treatment, requiring the full phase
space dynamics of the underlying rotational relaxation of the
particles and the need to consider arbitrary orientation of the
magnetic field, both external and internal, with respect to

FIG. 6. sColor onlined Coercivity shcd as a function of tempera-
ture for the interactingsh redd and noninteractingsL blackd
samples. The corresponding curvesshc in arbitrary unitsd obtained
from our theory assuming a double delta function particle size dis-
tribution are shown in the inset.
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anisotropy axis, is a subject of ongoing investigation.27 The
simplified theory of Sec. II has been applied to the Möss-
bauer experiments, described in Sec. III. Mössbauer spec-
troscopy is a sensitivelocal tool, both in spatial sense as well
as temporal sense. Thus it has been shown in Sec. III that
even though the dipolar interaction does not lead to bulk
magnetic order, it yields local order within the time-window
of the Mössbauer measurement. This slowing down of the
relaxation process, occasioned by interaction, has important
consequence for memory effects. Memory effects have in-
deed been our primary focus of attention, further dealt with
in Sec. IV. The symbiotic relationship of polydispersity and
interaction in influencing the relaxation phenomena has been
brought out through low-temperature magnetization and co-
ercivity data. We have demonstrated that just a bimodal dis-
tribution of particle size, in which one set of particles re-
mains frozen in its response behavior while the other set
exhibits magnetic viscosity, suffices to interpret dramatic
memory effects seen in cooling and heating cycles of the
magnetic response. These memory effects are quite akin to
and often interpreted to be due to much complex spin glass
phenomenon which is characterized by fascinating aging ef-
fects. In conclusion, the strong history dependent effects seen
in magnetization and coercivity measurements in NiFe2O4

magnetic nanoparticles have been interpreted as being due to
arrested Néel relaxation. Our model has been simplified by
choosing just two volumes of the particles, on either side of
the “blocking” limit. Further corroboration of the proposed
mechanism has been achieved by performing measurements
on an interacting system. Our results suggest that either by
tuning the interactionsthrough changing interparticle dis-
tanced or by tailoring the particle size distribution, these
nanosized magnetic systems can be put to important applica-
tion in memory devices. In particular, a flat volume distribu-
tion can be of greater utility than a monodispersed distribu-
tion with a single sharp peak.
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