2,597 research outputs found

    Clinical and biochemical response to neridronate treatment in a patient with osteoporosis-pseudoglioma syndrome (OPPG)

    Get PDF
    Osteoporosis-pseudoglioma syndrome (OPPG) is a rare autosomal recessive syndrome characterized by juvenile-onset osteoporosis and ocular abnormalities due to a low-density lipoprotein receptor-related protein 5 (LRP5) gene mutation. Treatment with bisphosphonates, particularly with pamidronate and risedronate, has been reported to be of some efficacy in this condition. We report on a patient with OPPG due to an LRP5 gene mutation, who showed an encouraging response after a 36-month period of neridronate therapy. We report a case of a patient treated with bisphosphonates. Bisphosphonates should be administered in OPPG patients as a first-line therapy during early childhood

    Charge redistribution in the formation of one-dimensional lithium wires on Cu(001)

    Get PDF
    We describe the formation of one-dimensional lithium wires on a Cu(001) substrate, providing an atomic-scale description of the onset of metallization in this prototypical adsorption system. A combination of helium atom scattering and density-functional theory reveals pronounced changes in the electronic charge distribution on the formation of the c(5√2×√2)R45° Li/Cu(001) structure, as in-plane bonds are created. Charge donation from Li-substrate bonds is found to facilitate the formation of stable, bonded, and depolarized chains of Li adatoms that coexist with an interleaved phase of independent adatoms. The resultant overlayer has a commensurate charge distribution and lattice modulations but differs fundamentally from structurally similar charge-density wave systems

    On Mixed Convection in a Horizontal Channel, Viscous Dissipation and Flow Duality

    Get PDF
    The conditions defining a stationary fluid flow may lead to a multiplicity of solutions. This circumstance is widely documented in the literature when mixed convection in a vertical channel or duct is accompanied by an important effect of viscous dissipation. Usually, there are double stationary solutions with a parallel velocity field which satisfy given temperature boundary conditions and with a prescribed mass flow rate. However, in a vertical internal flow, the dual solutions can be determined only numerically as they do not have a closed analytical form. This study shows that, in a horizontal channel, stationary mixed convection with viscous dissipation shows up dual flow branches whose mathematical expressions can be determined analytically. The features of these dual flows are discussed

    Dissipation instability of Couette-like adiabatic flows in a plane channel

    Full text link
    The mixed convection flow in a plane channel with adiabatic boundaries is examined. The boundaries have an externally prescribed relative velocity defining a Couette-like setup for the flow. A stationary flow regime is maintained with a constant velocity difference between the boundaries, considered as thermally insulated. The effect of viscous dissipation induces a heat source in the flow domain and, hence, a temperature gradient. The nonuniform temperature distribution causes, in turn, a buoyancy force and a combined forced and free flow regime. Dual mixed convection flows occur for a given velocity difference. Their structure is analysed where, in general, only one branch of the dual flows is compatible with the Oberbeck-Boussinesq approximation, for realistic values of the Gebhart number. A linear stability analysis of the basic stationary flows with viscous dissipation is carried out. The stability eigenvalue problem is solved numerically, leading to the determination of the neutral stability curves and the critical values of the P\'eclet number, for different Gebhart numbers. An analytical asymptotic solution in the special case of perturbations with infinite wavelength is also developed.Comment: 24 pages, 11 figure

    Unstable Convection in a Vertical Double–Layer Porous Slab

    Get PDF
    A convective stability analysis of the flow in a vertical fluid-saturated porous slab made of two layers with different thermophysical properties is presented. The external boundaries are isothermal with one of them impermeable while the other is open to an external fluid reservoir. This study is a development of previous investigations on the onset of thermal instability in a vertical heterogeneous porous slab where the heterogeneity may be either continuous or piecewise as determined by a multilayer structure. The aim of this paper is investigating whether a two-layer structure of the porous slab may lead to the onset of cellular convection patterns. The linear stability analysis is carried out under the assumption that one porous layer has a thermal conductivity much higher than the other layer. This assumption may be justified for the model of a heat transfer enhancement system involving a saturated metal foam. A flow model for the natural convection based on Darcy’s momentum transfer in a porous medium is adopted. The buoyancy-induced basic flow state is evaluated analytically. Small-amplitude two-dimensional perturbations of the basic state are introduced, thus leading to a linear set of governing equations for the disturbances. A normal mode analysis allows one to formulate the stability eigenvalue problem. The numerical solution of the stability eigenvalue problem provides the onset conditions for the thermal instability. Moreover, the results evidence that the permeability ratio of the two layers is a key parameter for the critical conditions of the instability

    Dissipation instability of Couette-like adiabatic flows in a plane channel

    Get PDF
    The mixed convection flow in a plane channel with adiabatic boundaries is examined. The boundaries have an externally prescribed relative velocity defining a Couette-like setup for the flow. A stationary flow regime is maintained with a constant velocity difference between the boundaries, considered as thermally insulated. The effect of viscous dissipation induces a heat source in the flow domain and, hence, a temperature gradient. The nonuniform temperature distribution causes, in turn, a buoyancy force and a combined forced and free flow regime. Dual mixed convection flows occur for a given velocity difference. Their structure is analysed where, in general, only one branch of the dual flows is compatible with the Oberbeck-Boussinesq approximation, for realistic values of the Gebhart number. A linear stability analysis of the basic stationary flows with viscous dissipation is carried out. The stability eigenvalue problem is solved numerically, leading to the determination of the neutral stability curves and the critical values of the Peclet number, for different Gebhart numbers. An analytical asymptotic solution in the special case of perturbations with infinite wavelength is also developed

    Surface wave non-reciprocity via time-modulated metamaterials

    Get PDF
    We investigate how Rayleigh waves interact with time-modulated resonators located on the free surface of a semi-infinite elastic medium. We begin by studying the dynamics of a single resonator with time-modulated stiffness, we evaluate the accuracy of an analytical approximation of the resonator response and identify the parameter ranges in which its behavior remains stable. Then, we develop an analytical model to describe the interaction between surface waves and an array of resonators with spatio-temporally modulated stiffness. By combining our analytical models with full-scale numerical simulations, we demonstrate that spatio-temporal stiffness modulation of this elastic metasurface leads to the emergence of non-reciprocal features in the Rayleigh wave spectrum. Specifically, we show how the frequency content of a propagating signal can be filtered and converted when traveling through the modulated medium, and illustrate how surface-to-bulk wave conversion plays a role in these phenomena. Throughout this article, we indicate bounds of modulation parameters for which our theory is reliable, thus providing guidelines for future experimental studies on the topic
    • …
    corecore