192 research outputs found
Garigliano nuclear power plant: seismic evaluation of the turbine building
The Italian Garigliano Nuclear Power Plant (NPP) started its energy production in 1963. At present it is in the decommissioning stage. In order to get a proper management of the radioactive waste that will be produced during the dismantling operations it has been considered convenient to convert the turbine building of the plant into a temporary waste repository. This decision posed a remarkable seismic safety assessment issue. As a matter of fact, the challenge was to extend, in satisfactory safety conditions, the use of an important facility that has reached the end of its designed lifetime and to have this extended use approved by nuclear safety agencies. In this context many tasks have been accomplished, of which the most important are:
(a) a new appraisal of site seismic hazard;
(b) the execution of many investigations and testing on the
construction materials;
(c) the set up of a detailed 3D finite element model including the explicit representation of foundation piles and soil;
(d) consideration of soil structure kinematic and dynamic nteraction effects.
This paper describes the adopted seismic safety assessment criteria which are based on a performance objectives design approach. While performance based design is the approach currently recommended by European Regulations to manage seismic risk and it is fully incorporated in the Italian code for conventional buildings, bridges and plants, NPP are not explicitly considered. Therefore it was necessary to delineate a consistent interpretation of prescribed rules in order to properly select the maximum and operating design earthquakes on one side and corresponding acceptable limit states on the other side. The paper further provides an outline of the numerical analyses carried out, of the main results obtained and of the principal retrofitting actions that will be realized
Level of M1 GABAB predicts micro offline consolidation of motor learning during wakefulness
The consolidation process stabilizes a new initially labile memory. This consolidation could operate on a shorter timescale during wakefulness after initial motor learning. Within micro-offline learning states, sequences of simple individual actions learned through interleaved practice are condensed into a unified skill through a time-dependent consolidation process occurring during wakeful periods. While emerging evidence links Glutamate and GABA modulations in the primary motor cortex (M1) to motor learning, its relationship with micro-offline consolidation processes in brief resting states during motor learning is unclear. To investigate this issue, we employed Transcranial magnetic stimulation (TMS) to evaluate whether interindividual variation of different neurotransmitters at rest influences motor learning consolidation in humans. Our results point to the role of GABAB in micro-offline motor consolidation processes during motor learning in M1. This finding could have an important impact on planning neuropharmacology or non-invasive brain stimulation approaches in clinical domains, such as post-stroke rehabilitation
Structural shop drawings at the Sydney Opera House: An instructive model of information flow?
The history of the design decisions directly related to the construction of the Sydney Opera House remains largely anecdotal. A rich group of items recently discovered in Australia may now start filling this gap, as documents brought to light include the drawings issued by the general contractor to build the concrete formwork for the shells, drawings of the temporary structures and falsework, site images, and contractor's notes. All in all, the drawings display sophisticated combinatory solutions for attaining the structural form required whilst introducing repetition and flexibility in the making of the discrete pieces. While suggesting a remarkable combination of manufacturing and structural shrewdness, these blueprints call into question the canonical history of the building roof's famous 'sails', the rhetoric of the 'spherical solution' used to arrive at them, and, most importantly, the information production and knowledge management model we conventionally work within
Up on the roof: a review of design, construction, and technology trends in vertical extensions
New spaces to accommodate growing urban populations should be created in a way that also reduces building lifecycle carbon emissions. In this context, the vertical extension (VE) has emerged as a novel building typology that can increase space in cities through the construction of additional floor area atop existing base buildings. This paper presents a review of 172 VE projects worldwide to provide an understanding of their design and construction trends, and to classify the technologies applied. Results show that VE construction has accelerated significantly over the past decade. Although most VEs consist of only small vertical additions, often one to two storeys, higher VEs can be built with innovative structural strategies and lightweight materials. Industrial buildings are often found to provide significant opportunities for VE due to their higher structural capacity. By comparing the characteristics and design of VEs, typologies based on architectural, structural, and construction technologies are presented
Digital heritage construction: Testing the heritage value of construction documentation and building processes through Virtual Reality
This research paper examines the heritage value of construction documentation and processes via Virtual Reality (VR), with a focus on the Sydney Opera House (SOH). It underscores the importance of comprehending and documenting transient construction techniques for heritage valuation. Utilising VR, the study offers an immersive portrayal of the SOH's construction, emphasising its innovative methods, craftsmanship, and environmental challenges. The paper draws from the Digital Heritage Construction project, showcased at the Heritage Exposition of the ICOMOS General Assembly 2023. This project featured two VR simulations, developed through analysing 200 original shop drawings, historical photographs, and site minutes and reports. The first simulation illustrates the formwork systems used for the SOH's iconic sails, while the second elucidates the assembly methods for the precast vaulted roofs, including the operation of the telescopic erection arch and the installation of concrete segments. The paper examines the novelty of this approach through a survey conducted at the Heritage Exposition. Analysis of the survey's result reveals VR's effectiveness in deepening the appreciation of architectural heritage's intangible qualities, providing new insights into the historical construction processes of the building and their cultural significance
When the heart inhibits the brain: Cardiac phases modulate short-interval intracortical inhibition
The phasic cardiovascular activity influences the central nervous system through the systolic baroreceptor inputs, inducing widespread inhibitory effects on behavior. Through transcranial magnetic stimulation (TMS) delivered during resting-state over the left primary motor cortex and across the different cardiac phases, we measured corticospinal excitability (CSE) and distinct indices of intracortical motor inhibition: short (SICI) and long (LICI) interval, corresponding to GABAA and GABAB neurotransmission, respectively. We found a significant effect of the cardiac phase on short-intracortical inhibition, without any influence on LICI. Specifically, SICI was stronger at systole compared to diastole. These results show a tight relationship between the cardiac cycle and the inhibitory neurotransmission within M1, and in particular with GABAA-ergic-mediated motor inhibition. We hypothesize that this process requires greater motor control via the gating mechanism and that this, in turn, needs to be recalibrated through the modulation of intracortical inhibition
Individual differences in intracortical inhibition predict action control when facing emotional stimuli
Efficient inhibitory control in the context of prepotent actions is vital. However, such action inhibition may be profoundly influenced by affective states. Interestingly, research indicates that action control can be either impaired or improved by emotional stimuli. Thus, a great deal of confusion surrounds our knowledge of the complex dynamics subtending emotions and action control. Here, we aimed to investigate whether negative stimuli, even when non-consciously presented and task-irrelevant, can affect action control relative to neutral stimuli. Additionally, we tested whether individual differences in intracortical excitability may predict action control capabilities. To address these issues, we asked participants to complete a modified version of the Stop Signal Task (SST) in which fearful or neutral stimuli were subliminally presented before the go signals as primes. Moreover, we assessed participants' resting-state corticospinal excitability, short intracortical inhibition (SICI), and intracortical facilitation (ICF). Results demonstrated better action control capabilities when fearful stimuli were subliminally presented and interindividual SICI predicted stronger action inhibition capabilities. Taken together, these results shed new light on the intricate dynamics between action, consciousness, and motor control, suggesting that intracortical measures can be used as potential biomarkers of reduced motor inhibition in research and clinical settings
Peripersonal space representation develops independently from visual experience
Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-To-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects' reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects' reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one's own and others' peripersonal space representation
The Influence of Vicarious Fear-Learning in “Infecting” Reactive Action Inhibition
Since the dawn of cognitive neuroscience, emotions have been recognized to impact on several executive processes, such as action inhibition. However, the complex interplay between emotional stimuli and action control is not yet fully understood. One way to measure inhibitory control is the stop-signal task (SST), which estimates the ability to cancel outright an action to the presentation of a stop signal by means of the stop-signal reaction times (SSRTs). Impaired as well as facilitated action control has been found when faced with intrinsic emotional stimuli as stop signals in SSTs. Here, we aimed at investigating more deeply the power of negative stimuli to influence our action control, testing the hypothesis that a previously neutral stimulus [i.e., the image of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)], which has been conditioned through vicarious fear learning, has the same impact on reactive action inhibition performance as an intrinsically negative stimulus (i.e., a fearful face or body). Action control capabilities were tested in 90 participants by means of a SST, in which the stop signals were represented by different negative stimuli. Results showed that the SARS-CoV-2 image enhanced the ability to suppress an ongoing action similarly to observing fearful facial expressions or fearful body postures. Interestingly, we found that this effect was predicted by impulsivity traits: for example, the less self-control the participants had, the less they showed emotional facilitation for inhibitory performance. These results demonstrated that vicarious fear learning has a critical impact on cognitive abilities, making a neutral image as threatening as phylogenetically innate negative stimuli and able to impact on our behavioral control
The Rapid Growth of Fibroids during Early Pregnancy
Several studies aimed to disentangle whether pregnancy influences the growth of uterine fibroids but results were inconsistent. In this study, we speculated that fibroid enlargement during pregnancy may not be linear and we hypothesized that this phenomenon may mainly occur during initial pregnancy. To test this hypothesis, we set up a prospective cohort study of women with fibroids undergoing IVF. Cases were women achieving a viable pregnancy. Controls were the subsequent women with fibroids but failing to become pregnant. Twenty-five cases and 25 controls were recruited. The total number of fibroids in the two groups was 46 and 41, respectively. The mean \ub1 SD diameter of the fibroids was 17 \ub1 10 and 20 \ub1 11 mm, respectively (p = 0.18). A statistically significant enlargement emerged exclusively in pregnant women. The median (Interquartile Range) modification of the diameter of the lesions in cases and controls was +34% (+6%/+65%) and +2% (-6%/+12%), respectively (p<0.001). The median (Interquartile Range) modification of the volume of the lesions was +140% (+23%/+357%) and 0% (-18%/+37%), respectively (p<0.001). In pregnant women, we failed to document any significant correlation between the magnitude of the growth and ovarian responsiveness to hyper-stimulation, suggesting that steroids hormones are not the unique factors involved. In conclusion, fibroids undergo a rapid and remarkable growth during initial pregnancy. Reasons behind this phenomenon remain to be clarified. The early rise in steroids hormones during early pregnancy may not be sufficient to explain the process. Other pregnancy-related hormones and proteins may play also key roles
- …
