10 research outputs found

    The potential land requirements and related land use change emissions of solar energy

    No full text
    Although the transition to renewable energies will intensify the global competition for land, the potential impacts driven by solar energy remain unexplored. In this work, the potential solar land requirements and related land use change emissions are computed for the EU, India, Japan and South Korea. A novel method is developed within an integrated assessment model which links socioeconomic, energy, land and climate systems. At 25–80% penetration in the electricity mix of those regions by 2050, we find that solar energy may occupy 0.5–5% of total land. The resulting land cover changes, including indirect effects, will likely cause a net release of carbon ranging from 0 to 50 gCO2/kWh, depending on the region, scale of expansion, solar technology efficiency and land management practices in solar parks. Hence, a coordinated planning and regulation of new solar energy infrastructures should be enforced to avoid a significant increase in their life cycle emissions through terrestrial carbon losses

    Atmospheric Biosignatures

    No full text
    Life has likely coevolved with the Earth system in time in various ways. Our oxygen-rich atmosphere and the protective ozone layer are mainly the result of photosynthetic activity. Additionally, bacteria emit greenhouse gases such as methane and nitrous oxide into the atmosphere, and vegetation can emit a variety of organic molecules. In an exoplanetary context, it is important to consider whether such gas-phase species – so-called atmospheric biosignatures – could be detected spectroscopically and attributed to extraterrestrial life. Another signature of life on Earth is the so-called redox disequilibrium of its atmosphere. This refers to the presence of simultaneously oxidizing and reducing species (e.g., molecular oxygen and methane). Without life, such species would react and be removed on relatively fast timescales. Since Earth’s atmosphere has changed considerably during its history, we will also consider atmospheric biosignatures in the context of the early Earth. This chapter will present a brief literature review of atmospheric biosignatures. We will discuss the main photochemical responses of such species in the modern and early Earth’s atmosphere and their potential to act as atmospheric biosignatures in an exoplanetary context

    Microbiology of Animal Bite Wound Infections

    No full text
    Summary: The microbiology of animal bite wound infections in humans is often polymicrobial, with a broad mixture of aerobic and anaerobic microorganisms. Bacteria recovered from infected bite wounds are most often reflective of the oral flora of the biting animal, which can also be influenced by the microbiome of their ingested prey and other foods. Bacteria may also originate from the victim's own skin or the physical environment at the time of injury. Our review has focused on bite wound infections in humans from dogs, cats, and a variety of other animals such as monkeys, bears, pigs, ferrets, horses, sheep, Tasmanian devils, snakes, Komodo dragons, monitor lizards, iguanas, alligators/crocodiles, rats, guinea pigs, hamsters, prairie dogs, swans, and sharks. The medical literature in this area has been made up mostly of small case series or case reports. Very few studies have been systematic and are often limited to dog or cat bite injuries. Limitations of studies include a lack of established or inconsistent criteria for an infected wound and a failure to utilize optimal techniques in pathogen isolation, especially for anaerobic organisms. There is also a lack of an understanding of the pathogenic significance of all cultured organisms. Gathering information and conducting research in a more systematic and methodical fashion through an organized research network, including zoos, veterinary practices, and rural clinics and hospitals, are needed to better define the microbiology of animal bite wound infections in humans
    corecore