600 research outputs found

    Strike point splitting induced by the application of magnetic perturbations on MAST

    Full text link
    Divertor strike point splitting induced by resonant magnetic perturbations (RMPs) has been observed on MAST for a variety of RMP configurations in a plasma scenario with Ip=750kA where those configurations all have similar resonant components. Complementary measurements have been obtained with divertor Langmuir probes and an infrared camera. Clear splitting consistently appears in this scenario only in the even configuration of the perturbation coils, similarly to the density pump-out. These results present a challenge for models of plasma response to RMPs.Comment: 9 pages, 4 figures, submitted to the proceedings of the 20th Conference on Plasma Surface Interactions, to be published in the Journal of Nuclear Material

    Toroidal modelling of plasma response and RMP field penetration

    Get PDF
    The penetration dynamics of the resonant magnetic perturbation (RMP) field is sim- ulated in the full toroidal geometry, under realistic plasma conditions in MAST experiments. The physics associated with several aspects of the RMP penetration - the plasma response and rotational screening, the resonant and non-resonant torques and the toroidal momentum balance - are highlighted. In particular, the plasma response is found to significantly amplify the non-resonant component of the RMP field for some of the MAST plasmas. A fast rotating plasma, in response to static external magnetic fields, experiences a more distributed electro- magnetic torque due to the resonance with continuum waves in the plasma. At fast plasma flow (such as for the MAST plasma), the electromagnetic torque is normally dominant over the neoclassical toroidal viscous (NTV) torque. However, at sufficiently slow plasma flow, the NTV torque can play a significant role in the toroidal momentum balance, thanks to the precession drift resonance enhanced, so called superbanana plateau regime

    Effect of resonant magnetic perturbations on low collisionality discharges in MAST and a comparison with ASDEX Upgrade

    Get PDF
    Sustained ELM mitigation has been achieved on MAST and AUG using RMPs with a range of toroidal mode numbers over a wide region of low to medium collisionality discharges. The ELM energy loss and peak heat loads at the divertor targets have been reduced. The ELM mitigation phase is typically associated with a drop in plasma density and overall stored energy. In one particular scenario on MAST, by carefully adjusting the fuelling it has been possible to counteract the drop in density and to produce plasmas with mitigated ELMs, reduced peak divertor heat flux and with minimal degradation in pedestal height and confined energy. While the applied resonant magnetic perturbation field can be a good indicator for the onset of ELM mitigation on MAST and AUG there are some cases where this is not the case and which clearly emphasise the need to take into account the plasma response to the applied perturbations. The plasma response calculations show that the increase in ELM frequency is correlated with the size of the edge peeling-tearing like response of the plasma and the distortions of the plasma boundary in the X-point region.Comment: 31 pages, 28 figures. This is an author-created, un-copyedited version of an article submitted for publication in Nuclear Fusion. IoP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Understanding ELM mitigation by resonant magnetic perturbations on MAST

    Full text link
    Sustained ELM mitigation has been achieved using RMPs with a toroidal mode number of n=4 and n=6 in lower single null and with n=3 in connected double null plasmas on MAST. The ELM frequency increases by up to a factor of eight with a similar reduction in ELM energy loss. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. A comparison of the filament structures observed during the ELMs in the natural and mitigated stages shows that the mitigated ELMs have the characteristics of type I ELMs even though their frequency is higher, their energy loss is reduced and the pedestal pressure gradient is decreased. During the ELM mitigated stage clear lobe structures are observed in visible-light imaging of the X-point region. The size of these lobes is correlated with the increase in ELM frequency observed. The RMPs produce a clear 3D distortion to the plasma and it is likely that these distortions explain why ELMs are destabilised and hence why ELM mitigation occurs.Comment: 41 pages, 19 figures. arXiv admin note: text overlap with arXiv:1305.306

    Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    No full text
    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed

    Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points

    Full text link
    This work addresses the question of the relation between strike-point splitting and magnetic stochasticity at the edge of a poloidally diverted tokamak in the presence of externally imposed magnetic perturbations. More specifically, ad-hoc helical current sheets are introduced in order to mimic a hypothetical screening of the external resonant magnetic perturbations by the plasma. These current sheets, which suppress magnetic islands, are found to reduce the amount of splitting expected at the target, which suggests that screening effects should be observable experimentally. Multiple screening current sheets reinforce each other, i.e. less current relative to the case of only one current sheet is required to screen the perturbation.Comment: Accepted in the Proceedings of the 19th International Conference on Plasma Surface Interactions, to be published in Journal of Nuclear Materials. Version 2: minor formatting and text improvements, more results mentioned in the conclusion and abstrac
    corecore