540 research outputs found

    Local freedom in the gravitational field

    Full text link
    In a cosmological context, the electric and magnetic parts of the Weyl tensor, E_{ab} and H_{ab}, represent the locally free curvature - i.e. they are not pointwise determined by the matter fields. By performing a complete covariant decomposition of the derivatives of E_{ab} and H_{ab}, we show that the parts of the derivative of the curvature which are locally free (i.e. not pointwise determined by the matter via the Bianchi identities) are exactly the symmetrised trace-free spatial derivatives of E_{ab} and H_{ab} together with their spatial curls. These parts of the derivatives are shown to be crucial for the existence of gravitational waves.Comment: New results on gravitational waves included; new references added; revised version (IOP style) to appear Class. Quantum Gra

    Dynamical systems approach to G2 cosmology

    Get PDF
    In this paper we present a new approach for studying the dynamics of spatially inhomogeneous cosmological models with one spatial degree of freedom. By introducing suitable scale-invariant dependent variables we write the evolution equations of the Einstein field equations as a system of autonomous partial differential equations in first-order symmetric hyperbolic format, whose explicit form depends on the choice of gauge. As a first application, we show that the asymptotic behaviour near the cosmological initial singularity can be given a simple geometrical description in terms of the local past attractor on the boundary of the scale-invariant dynamical state space. The analysis suggests the name ``asymptotic silence'' to describe the evolution of the gravitational field near the cosmological initial singularity.Comment: 28 pages, 3 tables, 1 *.eps figure, LaTeX2e (10pt), matches version accepted for publication by Classical and Quantum Gravit

    Quasi-Newtonian dust cosmologies

    Get PDF
    Exact dynamical equations for a generic dust matter source field in a cosmological context are formulated with respect to a non-comoving Newtonian-like timelike reference congruence and investigated for internal consistency. On the basis of a lapse function NN (the relativistic acceleration scalar potential) which evolves along the reference congruence according to N˙=αΘN\dot{N} = \alpha \Theta N (α=const\alpha = {const}), we find that consistency of the quasi-Newtonian dynamical equations is not attained at the first derivative level. We then proceed to show that a self-consistent set can be obtained by linearising the dynamical equations about a (non-comoving) FLRW background. In this case, on properly accounting for the first-order momentum density relating to the non-relativistic peculiar motion of the matter, additional source terms arise in the evolution and constraint equations describing small-amplitude energy density fluctuations that do not appear in similar gravitational instability scenarios in the standard literature.Comment: 25 pages, LaTeX 2.09 (10pt), to appear in Classical and Quantum Gravity, Vol. 15 (1998

    On the propagation of jump discontinuities in relativistic cosmology

    Get PDF
    A recent dynamical formulation at derivative level \ptl^{3}g for fluid spacetime geometries (M,g,u)({\cal M}, {\bf g}, {\bf u}), that employs the concept of evolution systems in first-order symmetric hyperbolic format, implies the existence in the Weyl curvature branch of a set of timelike characteristic 3-surfaces associated with propagation speed |v| = \sfrac{1}{2} relative to fluid-comoving observers. We show it is the physical role of the constraint equations to prevent realisation of jump discontinuities in the derivatives of the related initial data so that Weyl curvature modes propagating along these 3-surfaces cannot be activated. In addition we introduce a new, illustrative first-order symmetric hyperbolic evolution system at derivative level \ptl^{2}g for baryotropic perfect fluid cosmological models that are invariant under the transformations of an Abelian G2G_{2} isometry group.Comment: 19 pages, 1 table, REVTeX v3.1 (10pt), submitted for publication to Physical Review D; added Report-No, corrected typo

    Evolution of the density contrast in inhomogeneous dust models

    Full text link
    With the help of families of density contrast indicators, we study the tendency of gravitational systems to become increasingly lumpy with time. Depending upon their domain of definition, these indicators could be local or global. We make a comparative study of these indicators in the context of inhomogeneous cosmological models of Lemaitre--Tolman and Szekeres. In particular, we look at the temporal asymptotic behaviour of these indicators and ask under what conditions, and for which class of models, they evolve monotonically in time. We find that for the case of ever-expanding models, there is a larger class of indicators that grow monotonically with time, whereas the corresponding class for the recollapsing models is more restricted. Nevertheless, in the absence of decaying modes, indicators exist which grow monotonically with time for both ever-expanding and recollapsing models simultaneously. On the other hand, no such indicators may found which grow monotonically if the decaying modes are allowed to exist. We also find the conditions for these indicators to be non-divergent at the initial singularity in both models. Our results can be of potential relevance for understanding structure formation in inhomogeneous settings and in debates regarding gravitational entropy and arrow of time. In particular, the spatial dependence of turning points in inhomogeneous cosmologies may result in multiple density contrast arrows in recollapsing models over certain epochs. We also find that different notions of asymptotic homogenisation may be deduced, depending upon the density contrast indicators used.Comment: 22 pages, 1 figure. To be published in Classical and Quantum Gravit

    Causal propagation of geometrical fields in relativistic cosmology

    Get PDF
    We employ the extended 1+3 orthonormal frame formalism for fluid spacetime geometries (M,g,u)({\cal M}, {\bf g}, {\bf u}), which contains the Bianchi field equations for the Weyl curvature, to derive a 44-D evolution system of first-order symmetric hyperbolic form for a set of geometrically defined dynamical field variables. Describing the matter source fields phenomenologically in terms of a barotropic perfect fluid, the propagation velocities vv (with respect to matter-comoving observers that Fermi-propagate their spatial reference frames) of disturbances in the matter and the gravitational field, represented as wavefronts by the characteristic 3-surfaces of the system, are obtained. In particular, the Weyl curvature is found to account for two (non-Lorentz-invariant) Coulomb-like characteristic eigenfields propagating with v=0v = 0 and four transverse characteristic eigenfields propagating with v=1|v| = 1, which are well known, and four (non-Lorentz-invariant) longitudinal characteristic eigenfields propagating with |v| = \sfrac{1}{2}. The implications of this result are discussed in some detail and a parallel is drawn to the propagation of irregularities in the matter distribution. In a worked example, we specialise the equations to cosmological models in locally rotationally symmetric class II and include the constraints into the set of causally propagating dynamical variables.Comment: 25 pages, RevTeX (10pt), accepted for publication by Physical Review

    Frame dragging, vorticity and electromagnetic fields in axially symmetric stationary spacetimes

    Full text link
    We present a general study about the relation between the vorticity tensor and the Poynting vector of the electromagnetic field for axially symmetric stationary electrovacuum metrics. The obtained expressions allow to understand the role of the Poynting vector in the dragging of inertial frames. The particular case of the rotating massive charged magnetic dipole is analyzed in detail. In addition, the electric and magnetic parts of the Weyl tensor are calculated and the link between the later and the vorticity is established. Then we show that, in the vacuum case, the necessary and sufficient condition for the vanishing of the magnetic part is that the spacetime be static.Comment: 16 pages Latex. Some minor changes in the text and typos correcte

    Kinematic self-similar locally rotationally symmetric models

    Get PDF
    A brief summary of results on kinematic self-similarities in general relativity is given. Attention is focussed on locally rotationally symmetric models admitting kinematic self-similar vectors. Coordinate expressions for the metric and the kinematic self-similar vector are provided. Einstein's field equations for perfect fluid models are investigated and all the homothetic perfect fluid solutions admitting a maximal four-parameter group of isometries are given.Comment: 12 pages, LaTeX, final version, to appear in Class. Quantum Gra

    Isotropic singularity in inhomogeneous brane cosmological models

    Full text link
    We discuss the asymptotic dynamical evolution of spatially inhomogeneous brane-world cosmological models close to the initial singularity. By introducing suitable scale-invariant dependent variables and a suitable gauge, we write the evolution equations of the spatially inhomogeneous G2G_{2} brane cosmological models with one spatial degree of freedom as a system of autonomous first-order partial differential equations. We study the system numerically, and we find that there always exists an initial singularity, which is characterized by the fact that spatial derivatives are dynamically negligible. More importantly, from the numerical analysis we conclude that there is an initial isotropic singularity in all of these spatially inhomogeneous brane cosmologies for a range of parameter values which include the physically important cases of radiation and a scalar field source. The numerical results are supported by a qualitative dynamical analysis and a calculation of the past asymptotic decay rates. Although the analysis is local in nature, the numerics indicates that the singularity is isotropic for all relevant initial conditions. Therefore this analysis, and a preliminary investigation of general inhomogeneous (G0G_0) models, indicates that it is plausible that the initial singularity is isotropic in spatially inhomogeneous brane-world cosmological models and consequently that brane cosmology naturally gives rise to a set of initial data that provide the conditions for inflation to subsequently take place.Comment: 32 pages with 8 pictures. submitted to Class. Quant. Gra

    Silent universes with a cosmological constant

    Full text link
    We study non-degenerate (Petrov type I) silent universes in the presence of a non-vanishing cosmological constant L. In contrast to the L=0 case, for which the orthogonally spatially homogeneous Bianchi type I metrics most likely are the only admissible metrics, solutions are shown to exist when L is positive. The general solution is presented for the case where one of the eigenvalues of the expansion tensor is 0.Comment: 11 pages; several typos corrected which were still present in CGQ version; minor change
    corecore