630 research outputs found
Drag and inertia coefficients for horizontally submerged rectangular cylinders in waves and currents
The results of an experimental investigation carried out to measure combined wave and current loads on horizontally submerged square and rectangular cylinders are reported in this paper. The wave and current induced forces on a section of the cylinders with breadth-depth (aspect) ratios equal to 1, 0.5, and 0.75 are measured in a wave tank. The maximum value of Keulegan-Carpenter (KC) number obtained in waves alone is about 5 and Reynolds (Re) number ranged from 6.3976103 to 1.186105. The drag (CD) and inertia (CM) coefficients for each cylinder are evaluated using measured sectional wave forces and particle kinematics calculated from linear wave theory. The values of CD and CM obtained for waves alone have already been reported (Venugopal, V., Varyani, K. S., and Barltrop, N. D. P. Wave force coefficients for horizontally submerged rectangular cylinders. Ocean Engineering, 2006, 33, 11-12, 1669-1704) and the coefficients derived in combined waves and currents are presented here. The results indicate that both drag and inertia coefficients are strongly affected by the presenceof the current and show different trends for different cylinders. The values of the vertical component inertia coefficients (CMY) in waves and currents are generally smaller than the inertia coefficients obtained in waves alone, irrespective of the current's magnitude and direction. The results also illustrate the effect of a cylinder's aspect ratio on force coefficients. This study will be useful in the design of offshore structures whose columns and caissons are rectangular sections
Energetic charged particle fluxes relevant to Ganymede's polar region
The JEDI instrument made measurements of energetic charged particles near Ganymede during a close encounter with that moon. Here we find ion flux levels are similar close to Ganymede itself but outside its magnetosphere and on near wake and open field lines. But energetic electron flux levels are more than a factor of 2 lower on polar and near-wake field lines than on nearby Jovian field lines at all energies reported here. Flux levels are relevant to the weathering of the surface, particularly processes that affect the distribution of ice, since surface brightness has been linked to the open-closed field line boundary. For this reason, we estimate the sputtering rates expected in the polar regions due to energetic heavy ions. Other rates, such as those related to radiolysis by plasma and particles that can reach the surface, need to be added to complete the picture of charged particle weathering
The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission
Abstract The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth’s magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly’s Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to \u3e0.5 MeV (with capabilities to measure up to \u3e1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to \u3e0.5 MeV, and also measures total ion energy distributions from 45 keV to \u3e0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth’s magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth’s magnetotail during the about 6 months that comprise orbital phase 2
Electronic structure, phase stability and chemical bonding in ThAl and ThAlH
We present the results of theoretical investigation on the electronic
structure, bonding nature and ground state properties of ThAl and
ThAlH using generalized-gradient-corrected first-principles
full-potential density-functional calculations. ThAlH has been reported
to violate the "2 \AA rule" of H-H separation in hydrides. From our total
energy as well as force-minimization calculations, we found a shortest H-H
separation of 1.95 {\AA} in accordance with recent high resolution powder
neutron diffraction experiments. When the ThAl matrix is hydrogenated, the
volume expansion is highly anisotropic, which is quite opposite to other
hydrides having the same crystal structure. The bonding nature of these
materials are analyzed from the density of states, crystal-orbital Hamiltonian
population and valence-charge-density analyses. Our calculation predicts
different nature of bonding for the H atoms along and . The strongest
bonding in ThAlH is between Th and H along which form dumb-bell
shaped H-Th-H subunits. Due to this strong covalent interaction there is very
small amount of electrons present between H atoms along which makes
repulsive interaction between the H atoms smaller and this is the precise
reason why the 2 {\AA} rule is violated. The large difference in the
interatomic distances between the interstitial region where one can accommodate
H in the and planes along with the strong covalent interaction
between Th and H are the main reasons for highly anisotropic volume expansion
on hydrogenation of ThAl.Comment: 14 pages, 9 figure
The comitology game: European policymaking with parliamentary involvement
This paper discusses institutional reforms that might strengthen the role of the European Parliament in the policymaking process of the European Union. Using simple game theory, the paper analyzes the working properties of the different implementation procedures that are known as ‘comitology’. The Council of the European Union employs these procedures when it delegates some of its policymaking power to the Commission as part of Union legislation. We show how the balance of power is determined by the current comitology procedures, and how this balance would change if the role of the European Parliament were strengthened in the comitology game
An empirical approach to modeling ion production rates in Titan’s ionosphere I: Ion production rates on the dayside and globally
Titan's ionosphere is created when solar photons, energetic magnetospheric electrons or ions, and cosmic rays ionize the neutral atmosphere. Electron densities generated by current theoretical models are much larger than densities measured by instruments on board the Cassini orbiter. This model density overabundance must result either from overproduction or from insufficient loss of ions. This is the first of two papers that examines ion production rates in Titan's ionosphere, for the dayside and nightside ionosphere, respectively. The first (current) paper focuses on dayside ion production rates which are computed using solar ionization sources (photoionization and electron impact ionization by photoelectrons) between 1000 and 1400 km. In addition to theoretical ion production rates, empirical ion production rates are derived from CH4, CH3+, and CH4+ densities measured by the INMS (Ion Neutral Mass Spectrometer) for many Titan passes. The modeled and empirical production rate profiles from measured densities of N2+ and CH4+ are found to be in good agreement (to within 20%) for solar zenith angles between 15 and 90°. This suggests that the overabundance of electrons in theoretical models of Titan's dayside ionosphere is not due to overproduction but to insufficient ion losses
Risk of Subsequent Coronary Heart Disease in Patients Hospitalized for Immune-Mediated Diseases: A Nationwide Follow-Up Study from Sweden
Background: Certain immune-mediated diseases (IMDs), such as rheumatoid arthritis and systemic lupus erythematosus, have been linked to cardiovascular disorders. We examined whether there is an association between 32 different IMDs and risk of subsequent hospitalization for coronary heart disease (CHD) related to coronary atherosclerosis in a nationwide follow up study in Sweden. Methods and Findings: All individuals in Sweden hospitalized with a main diagnosis of an IMD (n = 336,479) without previous or coexisting CHD, between January 1, 1964 and December 31 2008, were followed for first hospitalization for CHD. The reference population was the total population of Sweden. Standardized incidence ratios (SIRs) for CHD were calculated. Overall risk of CHD during the first year after hospitalization for an IMD was 2.92 (95 % CI 2.84–2.99). Twentyseven of the 32 IMDs studied were associated with an increased risk of CHD during the first year after hospitalization. The overall risk of CHD decreased over time, from 1.75 after 1–5 years (95 % CI 1.73–1.78), to 1.43 after 5–10 years (95 % CI 1.41– 1.46) and 1.28 after 10+ years (95 % CI 1.26–1.30). Females generally had higher SIRs than males. The IMDs for which the SIRs of CDH were highest during the first year after hospitalization included chorea minor 6.98 (95 % CI 1.32–20.65), systemic lupus erythematosus 4.94 (95 % CI 4.15–5.83), rheumatic fever 4.65 (95 % CI 3.53–6.01), Hashimoto’s thyroiditis 4.30 (95 % CI 3.87–4.75), polymyositis/dermatomyositis 3.81 (95 % CI 2.62–5.35), polyarteritis nodosa 3.81 (95 % CI 2.72–5.19), rheumatoi
Risk of subsequent ischemic and hemorrhagic stroke in patients hospitalized for immune-mediated diseases: a nationwide follow-up study from Sweden
Background: Certain immune-mediated diseases (IMDs) have been associated with increased risk for cardiovascular disorders. The aim of the present study was to examine whether there is an association between 32 different IMDs and first hospitalization for ischemic or hemorrhagic stroke. Methods: All individuals in Sweden hospitalized with a main diagnosis of IMD (without previous or coexisting stroke), between January 1, 1987 and December 31, 2008 (n = 216,291), were followed for first hospitalization for ischemic or hemorrhagic stroke. The reference population was the total population of Sweden. Adjusted standardized incidence ratios (SIRs) for ischemic and hemorrhagic stroke were calculated. Results: Totally 20 and 15 of the 32 IMDs studied, respectively, were associated with an increased risk of ischemic and hemorrhagic stroke during the follow-up. The overall risks of ischemic and hemorrhagic stroke during the first year after hospitalization for IMD were 2.02 (95 % CI 1.90-2.14) and 2.65 (95 % CI 2.27-3.08), respectively. The overall risk of ischemic or hemorrhagic stroke decreased over time, to 1.50 (95 % CI 1.46-1.55) and 1.83 (95 % CI 1.69-1.98), respectively, after 1-5 years, and 1.29 (95 % CI 1.23-1.35) and 1.47 (95 % CI 1.31-1.65), respectively, after 10+ years. The risk of hemorrhagic stroke was >= 2 during the first year after hospitalization for seven IMDs: ankylosing spondylitis (SIR = 8.11), immune thrombocytopenic purpura (SIR = 8.60), polymyalgia rheumatica (SIR = 2.06), psoriasis (SIR = 2.88), rheumatoid arthritis (SIR = 3.27), systemic lupus erythematosus (SIR = 8.65), and Wegener ' s granulomatosis (SIR = 5.83). The risk of ischemic stroke was >= 2 during the first year after hospitalization for twelve IMDs: Addison's disease (SIR = 2.71), Crohn's disease (SIR = 2.15), Grave's disease (SIR = 2.15), Hashimoto's thyroiditis (SIR = 2.99), immune thrombocytopenic purpura (SIR = 2.35), multiple sclerosis (SIR = 3.05), polymyositis/dermatomyositis (SIR = 3.46), rheumatic fever (SIR = 3.91), rheumatoid arthritis (SIR = 2.08), Sjgren's syndrome (SIR = 2.57), systemic lupus erythematosus (SIR = 2.21), and ulcerative colitis (SIR = 2.15). Conclusions: Hospitalization for many IMDs is associated with increased risk of ischemic or hemorrhagic stroke. The findings suggest that several IMDs are linked to cerebrovascular disease
- …