231 research outputs found

    Fluctuating observation time ensembles in the thermodynamics of trajectories

    Full text link
    The dynamics of stochastic systems, both classical and quantum, can be studied by analysing the statistical properties of dynamical trajectories. The properties of ensembles of such trajectories for long, but fixed, times are described by large-deviation (LD) rate functions. These LD functions play the role of dynamical free-energies: they are cumulant generating functions for time-integrated observables, and their analytic structure encodes dynamical phase behaviour. This "thermodynamics of trajectories" approach is to trajectories and dynamics what the equilibrium ensemble method of statistical mechanics is to configurations and statics. Here we show that, just like in the static case, there is a variety of alternative ensembles of trajectories, each defined by their global constraints, with that of trajectories of fixed total time being just one of these. We show that an ensemble of trajectories where some time-extensive quantity is constant (and large) but where total observation time fluctuates, is equivalent to the fixed-time ensemble, and the LD functions that describe one ensemble can be obtained from those that describe the other. We discuss how the equivalence between generalised ensembles can be exploited in path sampling schemes for generating rare dynamical trajectories.Comment: 12 pages, 5 figure

    Non-Markovian non-stationary completely positive open quantum system dynamics

    Full text link
    By modeling the interaction of a system with an environment through a renewal approach, we demonstrate that completely positive non-Markovian dynamics may develop some unexplored non-standard statistical properties. The renewal approach is defined by a set of disruptive events, consisting in the action of a completely positive superoperator over the system density matrix. The random time intervals between events are described by an arbitrary waiting-time distribution. We show that, in contrast to the Markovian case, if one performs a system-preparation (measurement) at an arbitrary time, the subsequent evolution of the density matrix evolution is modified. The non-stationary character refers to the absence of an asymptotic master equation even when the preparation is performed at arbitrary long times. In spite of this property, we demonstrate that operator expectation values and operators correlations have the same dynamical structure, establishing the validity of a non-stationary quantum regression hypothesis. The non-stationary property of the dynamic is also analyzed through the response of the system to an external weak perturbation.Comment: 13 pages, 3 figure

    Lindblad rate equations

    Get PDF
    In this paper we derive an extra class of non-Markovian master equations where the system state is written as a sum of auxiliary matrixes whose evolution involve Lindblad contributions with local coupling between all of them, resembling the structure of a classical rate equation. The system dynamics may develops strong non-local effects such as the dependence of the stationary properties with the system initialization. These equations are derived from alternative microscopic interactions, such as complex environments described in a generalized Born-Markov approximation and tripartite system-environment interactions, where extra unobserved degrees of freedom mediates the entanglement between the system and a Markovian reservoir. Conditions that guarantees the completely positive condition of the solution map are found. Quantum stochastic processes that recover the system dynamics in average are formulated. We exemplify our results by analyzing the dynamical action of non-trivial structured dephasing and depolarizing reservoirs over a single qubit.Comment: 12 pages, 2 figure

    Thermodynamics of quantum jump trajectories in systems driven by classical fluctuations

    Full text link
    The large-deviation method can be used to study the measurement trajectories of open quantum systems. For optical arrangements this formalism allows to describe the long time properties of the (non-equilibrium) photon counting statistics in the context of a (equilibrium) thermodynamic approach defined in terms of dynamical phases and transitions between them in the trajectory space [J.P. Garrahan and I. Lesanovsky, Phys. Rev. Lett. 104, 160601 (2010)]. In this paper, we study the thermodynamic approach for fluorescent systems coupled to complex reservoirs that induce stochastic fluctuations in their dynamical parameters. In a fast modulation limit the thermodynamics corresponds to that of a Markovian two-level system. In a slow modulation limit, the thermodynamic properties are equivalent to those of a finite system that in an infinite-size limit is characterized by a first-order transition. The dynamical phases correspond to different intensity regimes, while the size of the system is measured by the transition rate of the bath fluctuations. As a function of a dimensionless intensive variable, the first and second derivative of the thermodynamic potential develop an abrupt change and a narrow peak respectively. Their scaling properties are consistent with a double-Gaussian probability distribution of the associated extensive variable.Comment: 12 pages, 3 figure

    Solvable class of non-Markovian quantum multipartite dynamics

    Get PDF
    We study a class of multipartite open quantum dynamics for systems with an arbitrary number of qubits. The non-Markovian quantum master equation can involve arbitrary single or multipartite and time-dependent dissipative coupling mechanisms, expressed in terms of strings of Pauli operators. We formulate the general constraints that guarantee the complete positivity of this dynamics. We characterize in detail the underlying mechanisms that lead to memory effects, together with properties of the dynamics encoded in the associated system rates. We specifically derive multipartite “eternal” non-Markovian master equations that we term hyperbolic and trigonometric due to the time dependence of their rates. For these models we identify a transition between positive and periodically divergent rates. We also study non-Markovian effects through an operational (measurement-based) memory witness approach

    A classical appraisal of quantum definitions of non-Markovian dynamics

    Full text link
    We consider the issue of non-Markovianity of a quantum dynamics starting from a comparison with the classical definition of Markovian process. We point to the fact that two sufficient but not necessary signatures of non-Markovianity of a classical process find their natural quantum counterpart in recently introduced measures of quantum non-Markovianity. This behavior is analyzed in detail for quantum dynamics which can be built taking as input a class of classical processes.Comment: 15 pages, 6 figures; to appear in J. Phys. B, Special Issue on "Loss of coherence and memory effects in quantum dynamics

    Detection of quantum non-Markovianity close to the Born-Markov approximation

    Get PDF
    We calculate in an exact way the conditional past-future correlation for the decay dynamics of a two-level system in a bosonic bath. Different measurement processes are considered. In contrast to quantum memory measures based solely on system propagator properties, here memory effects are related to a convolution structure involving two system propagators and the environment correlation. This structure allows to detect memory effects even close to the validity of the Born-Markov approximation. An alternative operational-based definition of environment-to-system backflow of information follows from this result. We provide experimental support to our results by implementing the dynamics and measurements in a photonic experiment.Fil: Silva, Thais De Lima. Universidade Federal do Rio de Janeiro; BrasilFil: Walborn, Stephen P.. Universidade Federal do Rio de Janeiro; BrasilFil: Santos, Marcelo F.. Universidade Federal do Rio de Janeiro; BrasilFil: Aguilar, Gabriel H.. Universidade Federal do Rio de Janeiro; BrasilFil: Budini, Adrian Adolfo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    Quantum regression theorem for non-Markovian Lindblad equations

    Full text link
    We find the conditions under which a quantum regression theorem can be assumed valid for non-Markovian master equations consisting in Lindblad superoperators with memory kernels. Our considerations are based on a generalized Born-Markov approximation, which allows us to obtain our results from an underlying Hamiltonian description. We demonstrate that a non-Markovian quantum regression theorem can only be granted in a stationary regime if the dynamics satisfies a quantum detailed balance condition. As an example we study the correlations of a two level system embedded in a complex structured reservoir and driven by an external coherent field.Comment: 14 pages, 5 figures. Extended version. The GBMA is deduced from projector technique. A new appendix is adde

    Functional characterization of generalized Langevin equations

    Full text link
    We present an exact functional formalism to deal with linear Langevin equations with arbitrary memory kernels and driven by any noise structure characterized through its characteristic functional. No others hypothesis are assumed over the noise, neither the fluctuation dissipation theorem. We found that the characteristic functional of the linear process can be expressed in terms of noise's functional and the Green function of the deterministic (memory-like) dissipative dynamics. This object allow us to get a procedure to calculate all the Kolmogorov hierarchy of the non-Markov process. As examples we have characterized through the 1-time probability a noise-induced interplay between the dissipative dynamics and the structure of different noises. Conditions that lead to non-Gaussian statistics and distributions with long tails are analyzed. The introduction of arbitrary fluctuations in fractional Langevin equations have also been pointed out

    Dynamical Reduction Models with General Gaussian Noises

    Get PDF
    We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the statevector, white noise stochastic processes with non white ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view the most relevant motivation for the approach we propose here derives from the fact that in relativistic models the occurrence of white noises is the main responsible for the appearance of untractable divergences. Therefore, one can hope that resorting to non white noises one can overcome such a difficulty. We investigate stochastic equations with non white noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above mentioned subject but also for the general study of dissipative systems and decoherence.Comment: 22 pages, Late
    corecore