3,776 research outputs found
Quality of life in patients with intermittent claudication
© 2017, The Author(s). Background: Intermittent claudication (IC) is a common condition that causes pain in the lower limbs when walking and has been shown to severely impact the quality of life (QoL) of patients. The QoL is therefore often regarded as an important measure in clinical trials investigating intermittent claudication. To date, no consensus exits on the type of life questionnaire to be used. This review aims to examine the QoL questionnaires used in trials investigating peripheral arterial disease (PAD). Material and methods: A systematic review of randomised clinical trials including a primary analysis of QoL via questionnaire was performed. Trials involving patients with diagnosed PAD were included (either clinically or by questionnaire). Any trial which had QoL as the primary outcome data was included with no limit being placed on the type of questionnaire used. Results: The search yielded a total of 1845 articles of which 31 were deemed appropriate for inclusion in the review. In total, 14 different QoL questionnaires were used across 31 studies. Of the questionnaires 24.06% were missing at least one domain when reported in the results of the study. Mean standard deviation varied widely based on the domain reported, particularly within the SF36. Discussion: Despite previous recommendations for Europewide standardisation of quality of life assessment, to date no such tool exists. This review demonstrated that a number of different questionnaires remain in use, that their completion is often inadequate and that further evidence-based guidelines on QoL assessment are required to guide future research
EPR Steering Inequalities from Entropic Uncertainty Relations
We use entropic uncertainty relations to formulate inequalities that witness
Einstein-Podolsky-Rosen (EPR) steering correlations in diverse quantum systems.
We then use these inequalities to formulate symmetric EPR-steering inequalities
using the mutual information. We explore the differing natures of the
correlations captured by one-way and symmetric steering inequalities, and
examine the possibility of exclusive one-way steerability in two-qubit states.
Furthermore, we show that steering inequalities can be extended to generalized
positive operator valued measures (POVMs), and we also derive hybrid-steering
inequalities between alternate degrees of freedom.Comment: 10 pages, 2 figure
Reachability in Higher-Order-Counters
Higher-order counter automata (\HOCS) can be either seen as a restriction of
higher-order pushdown automata (\HOPS) to a unary stack alphabet, or as an
extension of counter automata to higher levels. We distinguish two principal
kinds of \HOCS: those that can test whether the topmost counter value is zero
and those which cannot.
We show that control-state reachability for level \HOCS with -test is
complete for \mbox{}-fold exponential space; leaving out the -test
leads to completeness for \mbox{}-fold exponential time. Restricting
\HOCS (without -test) to level , we prove that global (forward or
backward) reachability analysis is \PTIME-complete. This enhances the known
result for pushdown systems which are subsumed by level \HOCS without
-test.
We transfer our results to the formal language setting. Assuming that \PTIME
\subsetneq \PSPACE \subsetneq \mathbf{EXPTIME}, we apply proof ideas of
Engelfriet and conclude that the hierarchies of languages of \HOPS and of \HOCS
form strictly interleaving hierarchies. Interestingly, Engelfriet's
constructions also allow to conclude immediately that the hierarchy of
collapsible pushdown languages is strict level-by-level due to the existing
complexity results for reachability on collapsible pushdown graphs. This
answers an open question independently asked by Parys and by Kobayashi.Comment: Version with Full Proofs of a paper that appears at MFCS 201
Percolative shunting on electrified surface
The surface discharge of electrified dielectrics at high humidity is
considered. The percolative nature of charge transport in electrets is
established. Particular attention is given to the phenomena of adsorption and
nucleation of electrically conducting phase in the cause of percolation cluster
growth on electrified surface. The critical index of the correlation lenght for
percolation cluster is found, and its value is in good agreement with the known
theoretical estimations.Comment: 4 pages with 1 figure, revtex, published in Tech. Phys. Lett. 25
(1999) 877-879 with one additional figur
Recommended from our members
British research in accounting and finance (2001–2007): the 2008 research assessment exercise
No abstract available
Recommended from our members
Rotational 3D Printing of Sensor Devices using Reactive Ink Chemistries
This paper charts progress in three key areas of a project supported by both UK
government and UK industry to manufacture novel sensor devices using rotary 3D printing
technology and innovative ink chemistries; (1) the development of an STL file slicing algorithm
that returns constant Z height 2D contour data at a resolution that matches the given print head
setup, allowing digital images to be generated of the correct size without the need for scaling;
(2) the development of image transformation algorithms which allow images to be printed at
higher resolutions using tilted print heads and; (3) the formulation of multi part reaction inks
which combine and react on the substrate to form solid material layers with a finite thickness. A
Direct Light Projection (DLP) technique demonstrated the robustness of the slice data by
constructing fine detailed three dimensional test pieces which were comparable to identical parts
built in an identical way from slice data obtained using commercial software. Material systems
currently under investigation include plaster, stiff polyamides and epoxy polymers and
conductive metallic’s. Early experimental results show conductivities of silver approaching
1.42x105 Siemens/m.Mechanical Engineerin
Diffuse continuum gamma rays from the Galaxy
A new study of the diffuse Galactic gamma-ray continuum radiation is
presented, using a cosmic-ray propagation model which includes nucleons,
antiprotons, electrons, positrons, and synchrotron radiation. Our treatment of
the inverse Compton (IC) scattering includes the effect of anisotropic
scattering in the Galactic interstellar radiation field (ISRF) and a new
evaluation of the ISRF itself. Models based on locally measured electron and
nucleon spectra and synchrotron constraints are consistent with gamma-ray
measurements in the 30-500 MeV range, but outside this range excesses are
apparent. A harder nucleon spectrum is considered but fitting to gamma rays
causes it to violate limits from positrons and antiprotons. A harder
interstellar electron spectrum allows the gamma-ray spectrum to be fitted above
1 GeV as well, and this can be further improved when combined with a modified
nucleon spectrum which still respects the limits imposed by antiprotons and
positrons. A large electron/IC halo is proposed which reproduces well the
high-latitude variation of gamma-ray emission. The halo contribution of
Galactic emission to the high-latitude gamma-ray intensity is large, with
implications for the study of the diffuse extragalactic component and
signatures of dark matter. The constraints provided by the radio synchrotron
spectral index do not allow all of the <30 MeV gamma-ray emission to be
explained in terms of a steep electron spectrum unless this takes the form of a
sharp upturn below 200 MeV. This leads us to prefer a source population as the
origin of the excess low-energy gamma rays.Comment: Final version accepted for publication in The Astrophysical Journal
(vol. 537, July 10, 2000 issue); Many Updates; 20 pages including 49
ps-figures, uses emulateapj.sty. More details can be found at
http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm
Percolation with Multiple Giant Clusters
We study the evolution of percolation with freezing. Specifically, we
consider cluster formation via two competing processes: irreversible
aggregation and freezing. We find that when the freezing rate exceeds a certain
threshold, the percolation transition is suppressed. Below this threshold, the
system undergoes a series of percolation transitions with multiple giant
clusters ("gels") formed. Giant clusters are not self-averaging as their total
number and their sizes fluctuate from realization to realization. The size
distribution F_k, of frozen clusters of size k, has a universal tail, F_k ~
k^{-3}. We propose freezing as a practical mechanism for controlling the gel
size.Comment: 4 pages, 3 figure
Logarithmic Corrections in Dynamic Isotropic Percolation
Based on the field theoretic formulation of the general epidemic process we
study logarithmic corrections to scaling in dynamic isotropic percolation at
the upper critical dimension d=6. Employing renormalization group methods we
determine these corrections for some of the most interesting time dependent
observables in dynamic percolation at the critical point up to and including
the next to leading correction. For clusters emanating from a local seed at the
origin we calculate the number of active sites, the survival probability as
well as the radius of gyration.Comment: 9 pages, 3 figures, version to appear in Phys. Rev.
Universal Formulae for Percolation Thresholds
A power law is postulated for both site and bond percolation thresholds. The
formula writes , where is the space
dimension and the coordination number. All thresholds up to are found to belong to only three universality classes. For first two
classes for site dilution while for bond dilution. The last one
associated to high dimensions is characterized by for both sites and
bonds. Classes are defined by a set of value for . Deviations
from available numerical estimates at are within and
for high dimensional hypercubic expansions at . The
formula is found to be also valid for Ising critical temperatures.Comment: 11 pages, latex, 3 figures not include
- …
