3,085 research outputs found

    Determining the Electron-Phonon Coupling Strength in Correlated Electron Systems from Resonant Inelastic X-ray Scattering

    Full text link
    We show that high resolution Resonant Inelastic X-ray Scattering (RIXS) provides direct, element-specific and momentum-resolved information on the electron-phonon (e-p) coupling strength. Our theoretical analysis demonstrates that the e-p coupling can be extracted from RIXS spectra by determining the differential phonon scattering cross section. An alternative, very direct manner to extract the coupling is to use the one and two-phonon loss ratio, which is governed by the e-p coupling strength and the core-hole life-time. This allows measurement of the e-p coupling on an absolute energy scale.Comment: 4 pages, 3 figure

    Ultrashort Lifetime Expansion for Indirect Resonant Inelastic X-ray Scattering

    Get PDF
    In indirect resonant inelastic X-ray scattering (RIXS) an intermediate state is created with a core-hole that has a ultrashort lifetime. The core-hole potential therefore acts as a femtosecond pulse on the valence electrons. We show that this fact can be exploited to integrate out the intermediate states from the expressions for the scattering cross section. By this we obtain an effective scattering cross section that only contains the initial and final scattering states. We derive in detail the effective cross section which turns out to be a resonant scattering factor times a linear combination of the charge response function S(q,ω)S({\bf q},\omega) and the dynamic longitudinal spin density correlation function. This result is asymptotically exact for both strong and weak local core-hole potentials and ultrashort lifetimes. The resonant scattering pre-factor is shown to be weakly temperature dependent. We also derive a sum-rule for the total scattering intensity and generalize the results to multi-band systems. One of the remarkable outcomes is that one can change the relative charge and spin contribution to the inelastic spectral weight by varying the incident photon energy.Comment: 9 pages, 3 figures embedde

    Theory for Magnetism and Triplet Superconductivity in LiFeAs

    Full text link
    Superconducting pnictides are widely found to feature spin-singlet pairing in the vicinity of an antiferromagnetic phase, for which nesting between electron and hole Fermi surfaces is crucial. LiFeAs differs from the other pnictides by (i) poor nesting properties and (ii) unusually shallow hole pockets. Investigating magnetic and pairing instabilities in an electronic model that incorporates these differences, we find antiferromagnetic order to be absent. Instead we observe almost ferromagnetic fluctuations which drive an instability toward spin-triplet p-wave superconductivity.Comment: Published versio

    Hamiltonian for coupled flux qubits

    Full text link
    An effective Hamiltonian is derived for two coupled three-Josephson-junction (3JJ) qubits. This is not quite trivial, for the customary "free" 3JJ Hamiltonian is written in the limit of zero inductance L. Neglecting the self-flux is already dubious for one qubit when it comes to readout, and becomes untenable when discussing inductive coupling. First, inductance effects are analyzed for a single qubit. For small L, the self-flux is a "fast variable" which can be eliminated adiabatically. However, the commonly used junction phases are_not_ appropriate "slow variables", and instead one introduces degrees of freedom which are decoupled from the loop current to leading order. In the quantum case, the zero-point fluctuations (LC oscillations) in the loop current diverge as L->0. Fortunately, they merely renormalize the Josephson couplings of the effective (two-phase) theory. In the coupled case, the strong zero-point fluctuations render the full (six-phase) wave function significantly entangled in leading order. However, in going to the four-phase theory, this uncontrollable entanglement is integrated out completely, leaving a computationally usable mutual-inductance term of the expected form as the effective interaction.Comment: REVTeX4, 16pp., one figure. N.B.: "Alec" is my first, and "Maassen van den Brink" my family name. Informal note. v2: completely rewritten; correction of final result and major expansion. v3: added numerical verification plus a discussion of Ref. [2

    An intrinsic limit to quantum coherence due to spontaneous symmetry breaking

    Get PDF
    We investigate the influence of spontaneous symmetry breaking on the decoherence of a many-particle quantum system. This decoherence process is analyzed in an exactly solvable model system that is known to be representative of symmetry broken macroscopic systems in equilibrium. It is shown that spontaneous symmetry breaking imposes a fundamental limit to the time that a system can stay quantum coherent. This universal timescale is tspon2πN/(kBT)t_{spon} \simeq 2\pi N \hbar / (k_B T), given in terms of the number of microscopic degrees of freedom NN, temperature TT, and the constants of Planck (\hbar) and Boltzmann (kBk_B).Comment: 4 pages, 3 figure

    First-principles study of the interaction and charge transfer between graphene and metals

    Get PDF
    Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density functional theory. The bonding of graphene to Al, Ag, Cu, Au and Pt(111) surfaces is so weak that its unique "ultrarelativistic" electronic structure is preserved. The interaction does, however, lead to a charge transfer that shifts the Fermi level by up to 0.5 eV with respect to the conical points. The crossover from p-type to n-type doping occurs for a metal with a work function ~5.4 eV, a value much larger than the work function of free-standing graphene, 4.5 eV. We develop a simple analytical model that describes the Fermi level shift in graphene in terms of the metal substrate work function. Graphene interacts with and binds more strongly to Co, Ni, Pd and Ti. This chemisorption involves hybridization between graphene pzp_z-states and metal d-states that opens a band gap in graphene. The graphene work function is as a result reduced considerably. In a current-in-plane device geometry this should lead to n-type doping of graphene.Comment: 12 pages, 9 figure

    Pupil Diameter Tracks Lapses of Attention

    Get PDF
    corecore