1,132 research outputs found

    Aspects of production and kinetic decoupling of non-thermal dark matter

    Full text link
    We reconsider non-thermal production of WIMP dark matter in a systematic way and using a numerical code for accurate computations of dark matter relic densities. Candidates with large pair annihilation rates are favored, suggesting a connection with the anomalies in the lepton cosmic-ray flux detected by Pamela and Fermi. Focussing on supersymmetric models we will consider the impact of non-thermal production on the preferred mass scale for dark matter neutralinos. We have also developed a new formalism to solve the Boltzmann's equation for a system of coannihilating species without assuming kinetic equilibrium and applied it to the case of pure Winos.Comment: Proceedings for the conference TAUP 201

    Electroweak lights from Dark Matter annihilations

    Full text link
    The energy spectra of Standard Model particles originated from Dark Matter annihilations can be significantly altered by the inclusion of electroweak gauge boson radiation from the final state. A situation where this effect is particularly important is when a Majorana Dark Matter particle annihilates into two light fermions. This process is in p-wave and hence suppressed by the small value of the relative velocity of the annihilating particles. The inclusion of electroweak radiation eludes this suppression and opens up a potentially sizeable s-wave contribution to the annihilation cross section. I will discuss the impact of this effect on the fluxes of stable particles resulting from the Dark Matter annihilations, which are relevant for Dark Matter indirect searches.Comment: 4 pages, 2 figures. Contribution to the conference proceedings of TAUP 2011, Munich - Germany (5-9 September 2011

    On Near-Linear-Time Algorithms for Dense Subset Sum

    Get PDF
    In the Subset Sum problem we are given a set of nn positive integers XX and a target tt and are asked whether some subset of XX sums to tt. Natural parameters for this problem that have been studied in the literature are nn and tt as well as the maximum input number mxX\rm{mx}_X and the sum of all input numbers ΣX\Sigma_X. In this paper we study the dense case of Subset Sum, where all these parameters are polynomial in nn. In this regime, standard pseudo-polynomial algorithms solve Subset Sum in polynomial time nO(1)n^{O(1)}. Our main question is: When can dense Subset Sum be solved in near-linear time O~(n)\tilde{O}(n)? We provide an essentially complete dichotomy by designing improved algorithms and proving conditional lower bounds, thereby determining essentially all settings of the parameters n,t,mxX,ΣXn,t,\rm{mx}_X,\Sigma_X for which dense Subset Sum is in time O~(n)\tilde{O}(n). For notational convenience we assume without loss of generality that tmxXt \ge \rm{mx}_X (as larger numbers can be ignored) and tΣX/2t \le \Sigma_X/2 (using symmetry). Then our dichotomy reads as follows: - By reviving and improving an additive-combinatorics-based approach by Galil and Margalit [SICOMP'91], we show that Subset Sum is in near-linear time O~(n)\tilde{O}(n) if tmxXΣX/n2t \gg \rm{mx}_X \Sigma_X/n^2. - We prove a matching conditional lower bound: If Subset Sum is in near-linear time for any setting with tmxXΣX/n2t \ll \rm{mx}_X \Sigma_X/n^2, then the Strong Exponential Time Hypothesis and the Strong k-Sum Hypothesis fail. We also generalize our algorithm from sets to multi-sets, albeit with non-matching upper and lower bounds

    Neutrino signals from electroweak bremsstrahlung in solar WIMP annihilation

    Full text link
    Bremsstrahlung of WW and ZZ gauge bosons, or photons, can be an important dark matter annihilation channel. In many popular models in which the annihilation to a pair of light fermions is helicity suppressed, these bremsstrahlung processes can lift the suppression and thus become the dominant annihilation channels. The resulting dark matter annihilation products contain a large, energetic, neutrino component. We consider solar WIMP annihilation in the case where electroweak bremsstrahlung dominates, and calculate the resulting neutrino spectra. The flux consists of primary neutrinos produced in processes such as χχνˉνZ\chi\chi\rightarrow \bar{\nu}\nu Z and χχνˉW\chi\chi\rightarrow \bar{\nu}\ell W, and secondary neutrinos produced via the decays of gauge bosons and charged leptons. After dealing with the neutrino propagation and flavour evolution in the Sun, we consider the prospects for detection in neutrino experiments on Earth. By comparing our signal with that for annihilation to W+WW^+W^-, we show that the detection prospects for the bremsstrahlung annihilation channel are favourable.Comment: 18 pages, 5 figures. Discussion expanded; matches published versio

    New Gamma-Ray Contributions to Supersymmetric Dark Matter Annihilation

    Full text link
    We compute the electromagnetic radiative corrections to all leading annihilation processes which may occur in the Galactic dark matter halo, for dark matter in the framework of supersymmetric extensions of the Standard Model (MSSM and mSUGRA), and present the results of scans over the parameter space that is consistent with present observational bounds on the dark matter density of the Universe. Although these processes have previously been considered in some special cases by various authors, our new general analysis shows novel interesting results with large corrections that may be of importance, e.g., for searches at the soon to be launched GLAST gamma-ray space telescope. In particular, it is pointed out that regions of parameter space where there is a near degeneracy between the dark matter neutralino and the tau sleptons, radiative corrections may boost the gamma-ray yield by up to three or four orders of magnitude, even for neutralino masses considerably below the TeV scale, and will enhance the very characteristic signature of dark matter annihilations, namely a sharp step at the mass of the dark matter particle. Since this is a particularly interesting region for more constrained mSUGRA models of supersymmetry, we use an extensive scan over this parameter space to verify the significance of our findings. We also re-visit the direct annihilation of neutralinos into photons and point out that, for a considerable part of the parameter space, internal bremsstrahlung is more important for indirect dark matter searches than line signals.Comment: Replaced Fig. 2c which by mistake displayed the same spectrum as Fig. 2d; the radiative corrections reported here are now implemented in DarkSUSY which is available at http://www.physto.se/~edsjo/darksusy
    corecore