586 research outputs found

    Quantum optomechanics beyond the quantum coherent oscillation regime

    Full text link
    Interaction with a thermal environment decoheres the quantum state of a mechanical oscillator. When the interaction is sufficiently strong, such that more than one thermal phonon is introduced within a period of oscillation, quantum coherent oscillations are prevented. This is generally thought to preclude a wide range of quantum protocols. Here, we introduce a pulsed optomechanical protocol that allows ground state cooling, general linear quantum non-demolition measurements, optomechanical state swaps, and quantum state preparation and tomography without requiring quantum coherent oscillations. Finally we show how the protocol can break the usual thermal limit for sensing of impulse forces.Comment: 6 pages, 3 figure

    Non-linear optomechanical measurement of mechanical motion

    Get PDF
    Precision measurement of non-linear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of non-linear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator by exploiting the intrinsic non-linearity of the radiation pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100~pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can be used to experimentally explore collapse models of the wavefunction and the potential for mechanical-resonator-based quantum information and metrology applications.Comment: 8 pages, 4 figures, extensive supplementary material available with published versio

    On the transduction of various noise sources in optical microtoroids

    Get PDF
    Optical microresonators constitute the basic building block for numerous precision measurements including single-particle detection, magnetometry, force and position sensing. The ability to resolve a signal of interest is limited however by various noise sources. In this tutorial style paper we provide a matrix formalism to analyze the effect of various modulations upon the optical cavity. The technique can in principle be used to estimate the sensitivity of microresonator based sensors and potentially to identify the optimal detection basis and cavity parameters to optimise the signal to noise ratio

    Culture for Service

    Get PDF
    Community Service Learning promotes active citizenship and addresses community needs through youth service. It is an educational process which involves young people in their own learning as they give valuable service to the community. Research has shown that numerous benefits accrue from the practice of service learning. Students\u27 level of social responsibility increases, their critical thinking skills improve, and they become more competent in their subject matter. Teachers are able to combine instruction with real-world experiences. Educational institutions are able to link significant academic concerns with major community problems and improve community relationships

    Absolute differential positronium-formation cross sections

    Get PDF
    The first absolute experimental determinations of the differential cross-sections for the formation of ground-state positronium are presented for He, Ar, H2 and CO2 near 0â—‹. Results are compared with available theories. The ratio of the differential and integrated cross-sections for the targets exposes the higher propensity for forward-emission of positronium formed from He and H2

    Evanescent field optical readout of graphene mechanical motion at room temperature

    Get PDF
    Graphene mechanical resonators have recently attracted considerable attention for use in precision force and mass sensing applications. To date, readout of their oscillatory motion has typically required cryogenic conditions to achieve high sensitivity, restricting their range of applications. Here we report the first demonstration of evanescent optical readout of graphene motion, using a scheme which does not require cryogenic conditions and exhibits enhanced sensitivity and bandwidth at room temperature. We utilise a high QQ microsphere to enable evanescent readout of a 70 μ\mum diameter graphene drum resonator with a signal-to-noise ratio of greater than 25 dB, corresponding to a transduction sensitivity of SN1/2=S_{N}^{1/2} = 2.6 ×10−13\times 10^{-13} m Hz−1/2\mathrm{Hz}^{-1/2}. The sensitivity of force measurements using this resonator is limited by the thermal noise driving the resonator, corresponding to a force sensitivity of Fmin=1.5×10−16F_{min} = 1.5 \times 10^{-16} N Hz−1/2{\mathrm{Hz}}^{-1/2} with a bandwidth of 35 kHz at room temperature (T = 300 K). Measurements on a 30 μ\mum graphene drum had sufficient sensitivity to resolve the lowest three thermally driven mechanical resonances.Comment: Fixed formatting errors in bibliograph

    Strong thermomechanical squeezing via weak measurement

    Get PDF
    We experimentally surpass the 3 dB limit to steady-state parametric squeezing of a mechanical oscillator. The localization of an atomic force microscope cantilever, achieved by optimal estimation, is enhanced by up to 6.2 dB in one position quadrature when a detuned parametric drive is used. This squeezing is, in principle, limited only by the oscillator Q factor. Used on low temperature, high frequency oscillators, this technique provides a pathway to achieve robust quantum squeezing below the zero-point motion. Broadly, our results demonstrate that control systems engineering can overcome well established limits in applications of nonlinear processes. Conversely, by localizing the mechanical position to better than the measurement precision of our apparatus, they demonstrate the usefulness of mechanical nonlinearities in control applications

    On the Conditional and Unconditional Type I Error Rates and Power of Tests in Linear Models with Heteroscedastic Errors

    Get PDF
    Preliminary tests for homoscedasticity may be unnecessary in general linear models. Based on Monte Carlo simulations, results suggest that when testing for differences between independent slopes, the unconditional use of weighted least squares regression and HC4 regression performed the best across a wide range of conditions

    Mechanical squeezing via fast continuous measurement

    Full text link
    We revisit quantum state preparation of an oscillator by continuous linear position measurement. Quite general analytical expressions are derived for the conditioned state of the oscillator. Remarkably, we predict that quantum squeezing is possible outside of both the backaction dominated and quantum coherent oscillation regimes, relaxing experimental requirements even compared to ground-state cooling. This provides a new way to generate non-classical states of macroscopic mechanical oscillators, and opens the door to quantum sensing and tests of quantum macroscopicity at room temperature
    • …
    corecore