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We experimentally surpass the 3 dB limit to steady-state parametric squeezing of a mechanical

oscillator. The localization of an atomic force microscope cantilever, achieved by optimal estimation,

is enhanced by up to 6.2 dB in one position quadrature when a detuned parametric drive is used. This

squeezing is, in principle, limited only by the oscillatorQ factor. Used on low temperature, high frequency

oscillators, this technique provides a pathway to achieve robust quantum squeezing below the zero-point

motion. Broadly, our results demonstrate that control systems engineering can overcome well established

limits in applications of nonlinear processes. Conversely, by localizing the mechanical position to better

than the measurement precision of our apparatus, they demonstrate the usefulness of mechanical

nonlinearities in control applications.
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High-quality mechanical oscillators are widely used for
weak force detection [1,2], nanoscale manipulation [3,4],
and quantum state engineering [5,6]. Such applications
often utilize optimal estimation to localize the oscillator,
followed by feedback control to confine its position. In a
classical context, this type of control is commonly used to
linearize the response of sensors driven into their nonlinear
regime, resulting in increased dynamic range and suppres-
sion of resonance frequency fluctuations [7]. Furthermore,
spurred by the growing prospect of accessing new quantum
physics [8], similar techniques are now being applied to
state-of-the art mechanical oscillators to cool them close
to the quantum limit set by mechanical zero-point motion
[9,10], and ultimately surpass it via quantum control tech-
niques such as backaction evasion [11–13]. However, the
level of achievable oscillator localization has always pre-
viously been limited to at best the measurement precision,
presenting a significant barrier to applications in both
quantum and classical regimes.

Applications of mechanical oscillators can also benefit
from nonlinearities without requiring any measurement. An
example of particular relevance to this Letter is mechanical
parametric amplification, where direct modulation of the
spring constant induces amplification of in-phase motion
[14]. This technique is often used in microelectromechan-
ical (MEMS) and nanoelectromechanical systems to boost
mechanical signals from in-phase forces above the mea-
surement noise floor [15,16]. Conversely, out-of-phase mo-
tion is deamplified and thereby more strongly confined or
‘‘squeezed.’’ In principle, squeezing below the zero-point
motion variance Vg is possible. Such ‘‘quantum squeezing’’

has applications in quantum metrology and tests of macro-
scale entanglement and quantum gravity [8]. However, the
emergence of mechanical instability limits the improve-
ment in confinement to at most 50% (or �3 dB) in the
steady state [17]. Since a mean thermal occupancy of just

half a phonon increases the oscillator’s motional variance
to twice the zero-point motion variance, the 3 dB limit
imposes a strict precooling requirement for quantum
squeezing by this method. For typical micro- and nano-
mechanical oscillators with resonance frequencies in the
range of 1–100 MHz, this temperature bound lies between
0.05 and 5 mK, outside the range of most conventional
cryogenic setups.
Here, we combine control techniques and parametric

modulation to both break the 3 dB limit for the first time
and achieve mechanical localization exceeding the mea-
surement sensitivity of our apparatus by 6.2 dB. The key
concept, proposed recently in Ref. [17], is to induce
correlations between the amplified and squeezed motional
quadratures by detuning the parametric modulation.
Information encoded on the amplified quadrature then
allows the squeezed quadrature to be estimated with
enhanced precision. Our experiments are performed with
a conventional AFM cantilever at room temperature, and
as such are far from the quantum regime. The enhanced
localization possible through such ‘‘thermomechanical
squeezing’’ can, however, be useful in force measurement,
for instance, by increasing the dynamic range when signal
distortion is introduced at large amplitudes [7,18], by
broadening the bandwidth in the squeezed quadrature
[19], and by enhancing the sensitivity to pulsed forces
with known timing [20,21]. Furthermore, since the tech-
nique demonstrated here applies equally to quantum zero-
point noise, it provides a path towards precise quantum
control and robust quantum squeezing of mechanical oscil-
lators at attainable temperatures and in the absence of
strong measurement [17].
The experimental setup, shown in Fig. 1(a), is based on a

commonly used optical measurement of the mechanical
element in a typical MEMS. The position of a gold-coated
AFM cantilever is monitored using a Mach-Zender
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interferometer in a balanced homodyne configuration, with
a fiber tip used to focus the optical field onto the cantilever.

The sensitivity Sx of the interferometer is 90 fm=
ffiffiffiffiffiffi
Hz

p
, as

shown in Fig. 1(b). This allows a high-fidelity measure-
ment of the thermal noise in the fundamental mode of
the cantilever, which is used to characterize its motion
and the accuracy of our estimation procedure. The mea-
surement noise for this signal Vmeas ¼ 4�S2x, where � is the
mode’s decay rate, is 60 dB below the thermally induced
variance VT . A weak sideband is also created using an
intensity modulation of the bright field, providing a low-
fidelity measurement with independent shot-noise charac-
teristics which was used to perform position estimation.
The sensitivity of this measurement could be varied

between 25 and 1000 pm=
ffiffiffiffiffiffi
Hz

p
by adjusting the optical

modulation depth, as illustrated in Fig. 1(b). At room
temperature, the thermal noise signal lies within this
region, allowing the study of estimation techniques in the
important regime where the signal level is comparable to

the measurement noise floor, i.e., where the signal-to-noise
ratio ðSNRÞ ¼ VT=Vmeas � 1.
Parametric amplification requires the spring constant of

the oscillator to be modulated near twice the resonance
frequency f0. For our cantilever, the spring constant was
increased well above its intrinsic value k0 � 0:06 N=m by
applying 450–650 V between the cantilever and a nearby
electrode, an effect due to the nonlinear position depen-
dence of capacitive energy in this geometry [14]. Since the
frequency shift is proportional to the square of the voltage,
this dc offset increases the peak-to-peak frequency modu-
lation � of the oscillator’s fundamental mode from an
additional alternating voltage [15]. The position measure-
ments were fed into lock-in amplifiers with a bandwidth
much wider than the mechanical decay rate �, allowing the
position dynamics around f0 to be observed in a rotating
frame at a nearby reference frequency fd ¼ f0 þ �.
The lock-in outputs X and Y, describing orthogonal quad-
rature components of the position x ¼ X cosð2�fdtÞ þ
Y sinð2�fdtÞ, allow easy visualization of the amplitude
and phase of oscillation. The parametric effect from an
alternating voltage at frequency 2fd applied between the
electrode and the cantilever leads to a preferred phase of
mechanical oscillation and hence a squeezed thermal dis-
tribution in the X-Y plane.
Initially, the high-fidelity measurement was used to ana-

lyze above- and below-threshold position statistics under
parametric amplification. Here, the dc voltage was set to
450 V, shifting the fundamental mode frequency f0 from
9.6 to 12.5 kHz. When driven on resonance (� ¼ 0), and
with a strength above the instability threshold (�> �),
thermomechanical squeezing surpasses 3 dB while the or-
thogonal quadrature is amplified indefinitely. Figure 2(a)
shows the time evolution of the maximally squeezed and
antisqueezed quadrature variances measured in this regime,
with � ¼ 22:5 Hz and � ¼ 2 Hz. Good agreement with
theory is observed at short times (<20 ms) during which
the squeezing approaches 11 dB. However, the amplified
quadrature saturates after approximately 35 ms, when the
amplitude approaches the optical quarter-wavelength of
195 nm and oscillations are no longer confined to the linear
portion of the interference fringe. Crucially, a side effect of
this measurement nonlinearity is a severe degradation in
observed squeezing well before saturation is apparent. Such
limits to dynamic range therefore preclude the generation of
all but transient squeezing above threshold. Nonetheless,
the strong squeezing observed reproduces the nonequilib-
rium squeezing observed in trapped ions [22] for the first
time in a micromechanical oscillator, albeit in the classical
regime. Transient squeezing of this kind could be useful in
applications where operation outside of equilibrium is
acceptable, such as stroboscopic sensing [20].
By detuning the parametric drive off resonance, the

oscillator phase undergoes a net rotation with respect to
the amplification axis, increasing the instability threshold

(a)

(b)

FIG. 1 (color online). (a) Schematic of the experimental setup.
The dark gray (red) path in the fiber-based interferometer
denotes the high-fidelity carrier signal while the light gray
(green) path denotes the low-fidelity signal created by amplitude
modulation (AM). PBS, polarizing beam splitter; FPC, fiber
polarization controller. (b) Displacement noise spectrum around
the fundamental cantilever resonance measured by the laser
carrier [dark gray (red) line] and by the sideband created
with a 1 Vpp modulation [light gray (green) line]. Dotted lines

represent the respective shot-noise-limited sensitivities of the
measurements, while the light gray (green) band corresponds to
the range of sensitivity available from the sideband. Inset:
Micrograph of the AFM cantilever used in this experiment.
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to �th ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
[23]. Consequently, for the drive

strength used here (� ¼ 22:5 Hz), the oscillator is unstable
for detunings below � ¼ 22:4 Hz. When the detuning is
increased further so that �> �, the phase-space trajecto-
ries form stable elliptical orbits. The variances initially
mirror this oscillatory behavior before relaxing to steady-
state values in the long time limit, in quantitative
agreement with theoretical modeling [23]. The effect of
increasing detuning on the transient statistics can be seen
in Fig. 2(b), where a dramatic change from monotonic
behavior to clear oscillations in the variance occurs at the
threshold detuning. Notably, transient squeezing below
3 dB is still possible below threshold, owing to the rapid
drive turn-on. The final steady-state variances can be
expressed with respect to the thermal variance VT as
V�=VT ¼ ð1� �=�thÞ�1 [23]. The squeezing limit of
VT=2 is therefore—while not a constraint outside of equi-
librium—a fundamental one when in the steady state.

From the above observations, the benefit of a parame-
trically driven system in equilibrium would appear to be

limited to enhanced readout in one quadrature and 3 dB
reduced variance in the other. However, it has been recently
predicted that these phenomena can be combined to
enhance localization using a weak measurement and opti-
mal estimation [17]. For an oscillator detuned so that�> �
and which has relaxed to the steady state, the thermally
excited oscillations will alternate between amplified and
squeezed quadratures before decaying. Since the dynamics
of the system are well known, a measurement of the ampli-
fied quadrature will provide some capacity to estimate the
squeezed quadrature at a later time. The squeezed quad-
rature therefore obtains an effective sensitivity enhance-
ment without amplifying its mechanical fluctuations. This
is useful for localizing an oscillator where conditions such
as cold environment, poor measurement sensitivity, or high
oscillator frequency limit the SNR.
Using control theory, the filter that extracts the best

quadrature estimates from noisy measurements can be
written in terms of parameters defining the oscillator’s
expected time evolution along with the measurement
sensitivity [23]. For an oscillator with no parametric drive,
the optimal quadrature estimates Xest and Yest that be
obtained from the low-fidelity measurement records
~X and ~Y are of the form XestðtÞ ¼ g0

R
t
0
~Xð�Þe��0ðt��Þd�

and YestðtÞ ¼ g0
R
t
0
~Yð�Þe��0ðt��Þd�. With a detuned para-

metric drive turned on, the two quadratures become corre-
lated and the estimates require a more complex
convolution [23], the implementation of which is described
in the Supplemental Material [24]. The best effective lo-
calization of the oscillator from these estimates can be
quantified using conditional variances. For example, the
conditional X quadrature variance VX is the mean square of
the residual noise XðtÞ � XestðtÞ. The conditional variance
also defines the minimum effective temperature of a quad-
rature achievable from ideal feedback cooling, equivalent
to applying phase-space displacements in the X and Y
quadratures by Xest and Yest, respectively, over time, as
illustrated in Fig. 3(a).
Steady-state estimation was performed with the cantile-

ver tuned to 14.5 kHz by a 650 V bias and varying the
sideband intensity to tune the SNR of the low-fidelity
measurement. For each SNR, continuous low-fidelity mea-
surements of the two quadratures of cantilever motion were
recorded in both the undriven case and with an applied
parametric drive of strength � ¼ 57 Hz and detuning
� ¼ 63 Hz to ensure the below-threshold condition. In
both cases, optimal estimates Xest and Yest were generated
in postprocessing by minimizing the respective conditional
variances over the filter parameters. Phase-space Brownian
trajectories fX; Yg determined from the high-fidelity mea-
surement are plotted in Fig. 3(b), along with corresponding
residual noise fX� Xest; Y � Yestg after applying the opti-
mized filter to the low-fidelity measurements in the low,
intermediate, and high SNR regimes. As expected, when
no parametric drive is applied, the quadratures of motion
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FIG. 2 (color online). Evolution of the squeezed and anti-
squeezed quadratures with a continuous parametric drive of
strength � ¼ 22:5Hz turned on at t ¼ 0. (a) Normalized quad-
rature variances versus time for an on-resonance drive [light gray
(green) line] and for a below-threshold detuned drive with � ¼
38 Hz [dark gray (violet) line]. Solid lines are theoretical fits,
while points show experimental statistics generated from 200
iterations of the drive turn-on. The dotted line represents the
�3 dB steady-state squeezing limit. At each point in time, the
quadratures are rotated so that the covariance hXYi�hXihYi�0
over all iterations. A ring-up time of 2.5 ms is chosen for the
parametric drive to minimize impulse forces on the cantilever.
(b) Theoretical (left) and experimental (right) variances as a
function of detuning and time. Numbered grey (blue) areas
indicate squeezing below 3 dB.
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have equal uncertainty, determined by the optimal condi-
tional variance; i.e., VX ¼ VY ¼ V0. As the thermal signal
increases towards the noise floor (SNR approaches 1), the
conditional variances drop sharply as expected. At maxi-
mum sideband intensity, the rms uncertainty in both quad-
ratures is reduced from the thermal value of 240 to 60 pm,
corresponding to an effective temperature decrease from
300 to 19 K. With the drive turned on, the high-fidelity
measurement shows unconditional thermomechanical
squeezing close to, but not surpassing, the 3 dB limit.
Critically, elliptical trajectories can be observed, establish-
ing the correlations required for our estimation protocol
between squeezed and antisqueezed quadratures. After
subtracting the optimal estimate, the residual noise is
maximally squeezed at an angle � that increases with
SNR. The variance V� of this quadrature decreases mono-
tonically along with the antisqueezed variance as the mea-
surement improves, with the residual noise becoming
symmetric in the high SNR limit.

The squeezing ratio V�=V0 determined from this analy-
sis is shown in Fig. 4 as a function of SNR, agreeing well
with theory. As expected, the variances reproduce the
unconditional squeezing in the weak measurement limit
and the parametric drive has no effect in the strong mea-
surement limit. However, in the intermediate regime where
SNR � 1 there is a distinct minimum, allowing enhanced
localization and breaking the 3 dB limit by a significant

factor. As can be seen in Fig. 4 (right), the squeezing can be
improved further by adjusting detuning closer to threshold,
with a maximum thermomechanical squeezing of 6.2 dB
achieved. These results can be understood by the fact that
the effective increased sensitivity due to the parametric
drive is of greatest benefit near the noise floor and with
maximal amplification of the orthogonal quadrature. Since

the maximum squeezing is proportional to
ffiffiffiffiffiffiffiffiffiffi
�=�

p
[23], it

can be enhanced by increasing the parametric drive
strength, subject to the condition � � f0. In principle,
this allows arbitrary suppression of one quadrature of
motion, exceeding the usual limit for control systems
defined by the measurement precision. For applications
requiring confinement in addition to localization, optimal
estimates must be calculated in real time in order to be fed
back as a damping force. As shown here by optimization,
this can be achieved by using the well-defined filter pa-
rameters in Ref. [23].
Although demonstrated with thermal fluctuations, our

technique applies in the same manner to the zero-point
motion of an oscillator, with the maximum reduction in
conditional variance V�=V0 independent of temperature
[23]. The effect of the quantum modification at low
temperatures—known as backaction noise—is instead to
limit the initial conditional variance V0 to be no lower than
the ground state variance. Therefore, our approach could
enable strong quantum squeezing and ultraprecise quan-
tum control [25]. Experiments with sensitivity near the
standard quantum limit (where SNR � 1 at zero tempera-
ture) have been performed recently with mechanical oscil-
lators [13,26]. While purely measurement-based schemes
exist to create mechanical squeezed states [11,12], signifi-
cant squeezing requires high measurement strengths and
efficiencies yet to be demonstrated in mechanical oscilla-
tors. Nanoelectromechanical systems are, however, com-
monly integrated with a parametric drive [15,16] and can
be precooled to near the ground state [27,28]. Such emerg-
ing systems are therefore good candidates for quantum

(a) (b)

FIG. 3 (color online). Reducing variance via estimation.
(a) Typical phase-space trajectory over a short time with a
detuned parametric drive applied to the oscillator. The estimates
fXest; Yestg at a given time agree with a high-fidelity measurement
(blue curve) to within an uncertainty given by the yellow ellipse,
localizing the oscillator to this phase space region. A feedback
force Ffb confining the oscillator to near the origin can be
modeled by subtracting the estimates from the high-fidelity
data. (b) Quadrature phase-space trajectories for 22.5 second
samples obtained from high-fidelity measurement [dark (blue)]
and the residual after subtracting the estimate [light (yellow)].
The upper panels show the random-walk pattern in the undriven
case mixed down at the resonance frequency for weak (A),
intermediate (B), and strong measurement (C). The lower panels
show the elliptical trajectories and residual noise for a para-
metric drive strength of � ¼ 57 Hz detuned close to threshold
and using the same SNR as above.

FIG. 4 (color online). Steady-state squeezing ratios plotted
against SNR for � ¼ 63 Hz (left) and against detuning for
SNR � 1 (right). Squares show the squeezing ratio for each
combination of experimental parameters, with theoretical fits
shown as solid lines. Dotted curves are fits to the squeezing
without estimation, limited to 1=2, with shaded bands to repre-
sent the experimental error margin. Labels A–C indicate the data
points used to generate the trajectories in Fig. 3.
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squeezing using our technique, even without significant
advances in transduction.

We have observed parametric thermomechanical
squeezing of a micromechanical oscillator exceeding
3 dB for the first time, both transient and in equilibrium,
with the latter breaking a well-known limit for parametri-
cally driven systems. This result demonstrates that the 3 dB
limit to steady-state parametric squeezing is not fundamen-
tal, and facilitates the wider use of thermomechanical
squeezing in control and sensing applications. The combi-
nation of parametric driving, measurement, and estimation
sheds light on the important interface between quantum
measurement and control that is being approached most
notably in opto- and electromechanical systems. The tech-
niques introduced, if applied in conjunction with state-of-
the-art readout techniques and high quality oscillators, also
open the door for the engineering of nonclassical states of
mesoscopic mechanical systems. More broadly, our results
demonstrate that combining oscillator nonlinearity with
control can both overcome fundamental limitations on
parametric processes and localize mechanical motion be-
yond constraints imposed by the measurement sensitivity.
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