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ABSTRACT

Optical microresonators constitute the basic building block for numerous precision measurements including
single-particle detection, magnetometry, force and position sensing. The ability to resolve a signal of interest is
limited however by various noise sources. In this tutorial style paper we provide a matrix formalism to analyze
the effect of various modulations upon the optical cavity. The technique can in principle be used to estimate
the sensitivity of microresonator based sensors and potentially to identify the optimal detection basis and cavity
parameters to optimise the signal to noise ratio.
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1. INTRODUCTION

Optical microresonators, including spherical and toroidal whispering gallery mode (WGM) resonators, consti-
tute an ultra-sensitive, on-chip platform for a large number of sensing applications. These encompass label-free
detection of molecules1, 2 and nanoparticles in liquid and gaseous environments,3, 4 force and position sensing,5

magnetic field sensing6, 7 and applications in the burgeoning field of quantum optomechanics.8 All these tech-
niques relay on the ultra-precise detection of resonance frequency shifts. To improve and optimize current sensor
systems it is essential to study the impact of various noise sources on the detection of the frequency shift and to
select the most favorable detection scheme. In this tutorial style paper we provide a coherent formalism to treat
general noise sources in optical microresonatos, i.e. toroidal whispering gallery mode resonators.

2. HAMILTONIAN DESCRIPTION

The system of interest treated in this document is composed of an optical cavity, in practice a microtoroid,
upon which small, sub-wavelength scattering particles are attached. Following a similar approach that used
previously,3, 9 we approximate the cavity in isolation as supporting only two degenerate modes at frequency
ω0. Each mode corresponds to light circulating in either the clockwise or anti-clockwise direction in the toroid.
Other resonances, although they exist in reality, are assumed to have sufficiently different eigenfrequencies as to
be irrelevant in the description of the system dynamics in the regime of interest. Gain and loss, corresponding
to non-unitary evolution of the system, will be introduced later.

The general form of Hamiltonian describing the system can then be written as follows:

H = H0
+ + H0

− +
N∑

n=1

∑

i,j

V n
i,j | i, j ∈ (+,−) (1)

This Hamiltonian is fundamentally composed of terms that describe a cavity in the absence of scattering interac-
tions (H0) and terms that describe the interaction with scatters (V ). The summations are performed over each
of the N scatters in the system, and for each, additional sums are performed considering the 4 possible coupling
terms with the 2 cavity modes (+,−). The effect of the scattering terms upon the system is both to effectively

Further author information: (Send correspondence to J.K.)
J.K.: E-mail: j.knittel@uq.edu.au, Telephone: +61 7 33 53412

Invited Paper

Optical Sensing and Detection II, edited by Francis Berghmans, Anna Grazia Mignani, Piet De Moor, 
Proc. of SPIE Vol. 8439, 843911 · © 2012 SPIE · CCC code: 0277-786X/12/$18 · doi: 10.1117/12.921199

Proc. of SPIE Vol. 8439  843911-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/06/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



shift the optical length of the cavity and to couple light between modes resulting in a splitting of the cavity
eigenmodes. Explicitly, the Hamiltonian of an electromagnetic field may be expressed as:

H0
± = h̄ω0(â

†
±â± + 1/2) (2)

where â is the field amplitude operator. Here we have found it convenient to normalise the field operators such
that [â†, â] = 1. The interaction components are computed as follows:

Vn
i,j = −ε0ηnR[Ei(rn)]R[Ej(rn)] (3)

≈ − ε0ηn

2
EiEj [â

†
i âj(rn) + âiâ

†
j(rn)] (4)

≈ −gn
i,jh̄

2
[â†

i âj(rn) + âiâ
†
j(rn)] (5)

Equation 3 follows from the definition of the energy of the dipole field interaction, namely p ·E = ε0ηE ·E,
where η is the polarisability of the particle. Practically the polarisability may be determined from a particle’s
volume and refractive index via the Clausius-Mossotti relation. Recasting equation 3 in terms of the field
operators (equation 4) has been done with the removal of terms in the envelope that vary on frequency scales
of the order of 2ω0 (c.f. the rotating wave approximation). Note the normalisation parameter E is the vacuum
fluctuation associated with each mode respectively, where:

Ei =
√

h̄ω0

2ε0Vi
(6)

In equation 5, the parameters describing the system are conveniently condensed to a single variable g, which
encompasses the fixed parameters of the scattering particle:

gi,j = −ε0ηEiEj/h̄ (7)

From symmetry arguments, it can be shown that for any given particle n, the coupling rates between the various
modes are equal, therefore reducing the number of variables: gn

i,j = gn. Hence we may write:

gn =
ω0ηn

2V
(8)

It follows from equation 8, that the interaction terms in the Hamiltonian are enhanced by decreasing the mode
volume. If we allow all N scatters to be located at the same position, the scattering terms for all N particles
may be trivially combined to the scattering terms for a single particle, with altered scattering rates. If instead
we allow the scatters to be located anywhere within the spatial distribution of the optical mode, the position
dependence can be well approximated by a complex phase factor:

â(rn) = eiϕâ (9)

This approximation of frequency independent phase shift is only valid for detunings that are small compared to
the free spectral range of the cavity. Given that the FSR of a typical microtoroid is about 1.4THz and cavity
linewidths/coupling coefficients are of order 10MHz, this approximation is abundantly satisfied. Hence we can
write equation 5 as:

Vn
i,j = −gnh̄

2
[â†

ie
−iϕn

i âje
iϕn

j − âie
iϕn

i â†
je

−iϕn
j ] (10)

For the nth particle, the four scattering terms in equation 10 evaluate as:

Vn
±,± = −gnh̄

2
[â†

±â± + â±â†
±] (11)

Vn
±,∓ = −gnh̄

2
[â†

±e−iϕn
± â∓eiϕn

∓ + â±eiϕn
± â†

∓e−iϕn
∓ ]

= −gnh̄

2
[â†

±â∓eiφn + â±â†
∓e−iφn ] (12)
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Where the difference in accumulated phases is given by the variable
φn = (ϕn− − ϕn

+). This angle can be viewed as twice the phase shift accumulated by either the clockwise or
anticlockwise mode when traveling from the origin to the scatter. Expanding out all the terms in equation 1,
the total Hamiltonian for the system can now be expressed as:

H = h̄ω′[(â†
+â+ + 1/2) + (â†

−â− + 1/2)] − h̄[βâ†
+â− + β∗â+â†

−] (13)

with the new ’shifted’ cavity frequency ω′ = ω0 −
∑

n gn, and the complex scattering term β =
∑

n gneiφn .

As a note of interest, equation 13 shows the net effect of adding scatters to the system is twofold:

1. In the absence of cross-coupling, the cavity eigenmodes are shifted to lower frequencies by an amount equal
to the sum of the magnitudes of the scatter strengths g.

2. The cross-coupling terms scatter energy between the shifted modes, with a magnitude proportional to the
complex sum of the scatter strengths, weighted by a position dependent complex phase factor.

It is also apparent the two effects may be independently adjusted by suitable choice of the position and strength
of the scatters.

2.1 Time Evolution of the System

The unitary time evolution of the operators is given by the Heisenberg equations of motion. Since we are
interested in the behavior of an open system, additional terms that couple the system to external fields are
required. These equations are termed the quantum Langevin equations of the system:

˙̂a± =
i

h̄
[H, â±] − (γcâ± +

√
2γcâenv) − (γâ± +

√
2γd̂±)

−
∑

n

(
γn

2
[â±(rn) + â∓(rn)] +

√
2γnâenv) (14)

where γ is the coupling rate to the external field d̂; γc is the intrinsic loss rate of the cavity and âenv is the
vacuum field operator. The terms on the first line of equation 14 give the dynamics of a toroid where the only
damping is intrinsic cavity damping. The terms on the second line include the effects of additional noise and
damping produced by the scatters.

For the moment we will neglect the vacuum noise by removing all âenv terms, and the dissipative effects of
the scatters by disregarding the second line of equation 14, so that the langevin equations are reduced to:

˙̂a± =
i

h̄
[H, â±] − γtâ± −

√
2γd̂± (15)

where γt is the total distributed loss rate of the system, equal to γt = γ + γc. Evaluating the commutators
and transforming into the rotating reference frame i.e. â = ãeiωt and isolating the time derivative of the slowly
oscillating envelope gives the following two equations of motion:

˙̃a+ = −(iΔ + γt)ã+ − iβ∗ã− −
√

2γl̃in (16)
˙̃a− = −(iΔ + γt)ã− − iβ ã+ −

√
2γr̃in (17)

where the detuning Δ has been defined as Δ = ω − ω′. These equations constitute the equations of motion of
the system in the rotating reference frame. By setting the time derivative of the mode amplitudes to zero, we
arrive at the steady-state solutions to the system. The equations may be readily cast in matrix form as follows,
where we have condensed η = iΔ + γt for convenience.:

(
η iβ∗

iβ η

) [
ã+

ã−

]
= −

√
2γ

[
l̃in
r̃in

]
(18)
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Figure 1. Illustration of the relevant fields in the taper-toroid system. Communication of the fields in the taper with
the outside world is effected through two ’ports’ here labeled left (l) and right (r) respectively. Each port supports both
a forward and reverse propagating wave, which couple to either the clockwise (a+) or anticlockwise (a−) toroid mode
respectively.

At this point we wish to introduce interference of out-coupled light within the taper. We first assume that the
coupling rate into the toroid is small, and therefore that the field entering the taper is effectively un-depleted.
This is known as the mean field approximation. In the rotating reference frame this may be written as follows:

[
r̃out

l̃out

]
=

[
l̃in
r̃in

]
+

√
2γ

[
ã+

ã−

]
(19)

Equation 19 my now be inserted into equation 18 to obtain a relation between the incident and scattered
fields in the taper: [

r̃out

l̃out

]
= −2γ

(
η iβ∗

iβ η

)−1 [
l̃in
r̃in

]
+

[
l̃in
r̃in

]
(20)

This equation can be cast into the conventional scattering matrix form:
[
r̃out

l̃out

]
= S

[
r̃in

l̃in

]
(21)

with:

S =
−2γ

η2 + |β|2
(−iβ∗ η

η −iβ

)
+

(
0 1
1 0

)
(22)

Equation 22 defines the (experimentally accessible) steady-state scattering matrix for the taper-toroid system.
Taking a moment to analyse the terms in the matrix, we see that considering a single input and output, the
(diagonal) β terms are responsible for light reflected by the toroid, whilst transmitted light is an interference of the
input (ones matrix) and the cavity modified light (the eta terms). When the toroid matrix (18) becomes nearly
singular, the system response is at an extremum, which is manifested as a resonant dip or peak in transmission
or reflection respectively. From the scattering matrix, the field transmission and reflection coefficients have the
form:

T = 1 − 2γ(iΔ + γt)
(iΔ + γt)2 + |β|2 R =

−2iγβ

(iΔ + γt)2 + |β|2 (23)

where we have expanded out η to make the dependence upon detuning more explicit. A critical coupling condition
can be defined where the transmitted amplitude decreases to zero at zero detuning. In this situation all the energy
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entering the system is scattered out of the toroid into free space or in the case of scattering particles on the
surface of the toroid, additionally some light is reflected. Setting T = 0 and solving for the taper-toroid coupling
rate we find:

γ =
√

γ2
c + |β|2 (24)

In practice, this coupling rate depends upon the taper-toroid distance which may be varied until at some fre-
quency, the transmitted light is seen to fall to zero. At at this point critical coupling has been achieved.

3. SIGNAL DETECTION AND NOISE

3.1 Perturbative Expansion
Having solved for the steady state, we can find the effect of modulation upon the system parameters by performing
a perturbative expansion of the equations of motion. Let the field amplitude in the rotating wave basis be:

ã(t) = α + δã(t) (25)

where α is the solution to the steady state equations of motion and δã is a complex perturbation of the field.
By substitution into the equations of motion, the perturbation must necessarily satisfy the following equations:

δ ˙̃a+ = −(iΔ + γt)δã+ − iβ∗δã− −
√

2γδl̃in (26)

δ ˙̃a− = −(iΔ + γt)δã− − iβ δã+ −
√

2γδr̃in (27)

and similarly, the consistency of the coupler equations is ensured only if:

δrout = δlin +
√

2γδa+ δlout = δrin +
√

2γδa− (28)

Fourier transforming these equations with respect to the sideband modulation and writing as before the result
in matrix form we obtain: [

δr̃out

δl̃out

]
= S(Ω)

[
δr̃in

δl̃in

]
(29)

with:

S(Ω) =
−2γ

(η + iΩ)2 + |β|2
( −iβ∗ η + iΩ

η + iΩ −iβ

)
+

(
0 1
1 0

)
(30)

where Ω is the sideband modulation frequency. It is apparent from (30) that the upper and lower sidebands
produced by some modulation will have very different phase and amplitude response when there is a non-zero
detuning of the cavity.

Completely analogous to the transmission and reflection coefficients described earlier in the steady state case
(23), the appropriate scattering terms in the equations (30) give the generalised transmission and reflection
coefficients:

T (Ω) = 1 − 2γ(η + iΩ)
(η + iΩ)2 + |β|2 R(Ω) =

−2iγβ

(η + iΩ)2 + |β|2 (31)

It is necessarily satisfied that in the limit as Ω → 0, equations 31 reduce to the steady-state coefficients (23).

3.2 Detection
Light falling on the detector produces a photocurrent in proportion to i(t) as follows:

i(t) = â†(t)â(t)

= ã†(t)ã(t)

= [α∗ + δã†(t)][α + δã(t)]

≈ |α|2 + αδã†(t) + α∗δã(t)

≈ |α|2 + |α|δX̃(t) (32)
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where it is natural to define amplitude δX̃ and phase δỸ modulation operators respectively:

δX̃(t) =
1
|α| [αδã†(t) + α∗δã(t)] (33)

δỸ (t) =
i

|α| [αδã†(t) − α∗δã(t)] (34)

Fourier transforming equation (32) gives:

i(Ω) = |α|2δ(Ω) + |α|δX̃(Ω) (35)

where Ω is the modulation frequency or detuning from the carrier and δ(Ω) is the dirac delta. The spectral
power density of the photocurrent (as measured by a spectrum analyser) can be well approximated as:

s(Ω) = 〈 |i(Ω)|2〉 (36)

so for the photocurrent (35) we have a spectral density:

s(Ω) = |α|2〈δX̃†(Ω)δX̃(Ω)〉
+ δ(Ω)|α|3〈δX̃†(Ω) + δX̃(Ω)〉 + δ2(Ω)|α|4 (37)

For the most part, the zero frequency terms may be disregarded, and we are simply left with:

s(Ω) = |α|2〈δX̃†(Ω)δX̃(Ω)〉 (38)

Thus the power spectrum measured by the spectrum analyser depends in a simple way only on amplitude
modulation of the carrier.

3.3 The Effect of Laser Noise

In practice, the fields used to in the excitation of the toroid will always carry noise into the system. The effect
of this noise on the measured output is modified by the action of the toroid. We can quantify the effect of the
toroid upon the laser noise by expressing the output noise terms (in Fourier space) in terms of the input noise
terms. We begin by combining 33 and 34, so that in Fourier space:

δã(Ω) =
α

2|α| [δX̃(Ω) + iδỸ (Ω)] (39)

δã†(−Ω) =
α∗

2|α| [δX̃(Ω) − iδỸ (Ω)] (40)

Additionally the Fourier transformed form of 33 gives:

δX̃(Ω) =
1
|α| [αδã†(−Ω) + α∗δã(Ω)] (41)

Then, as before the input and output fields are related by the appropriate terms in the scattering matrix:

αou,k = Sm
k (Δ)αin,m (42)

δãou,k(Ω) = Sm
k (Δ + Ω)δãin,m(Ω) (43)

where we have used indexed notation to avoid explicitly writing the matrix products in the lines that follow.
Rewriting 42 in indexed form we have:

|αou,k|δX̃ou,k(Ω) = αou,kδã†
ou,k(−Ω) + α∗

ou,kδãou,k(Ω) (44)
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Then amplitude modulation of the output modes can then expressed in terms of the input modes using (42):

|αou,k|δX̃ou,k(Ω) = Sm
k (Δ)αin,mSn∗

k (Δ − Ω)δã†
in,n(−Ω)

+ Sm∗
k (Δ)α∗

in,mSn
k (Δ + Ω)δãin,n(Ω) (45)

Where summation over m,n is implied. Writing the input perturbation operators in terms of the input amplitude
and phase modulations:

|αou,k|δX̃ou,k(Ω) = Sm
k (Δ)αin,mSn∗

k (Δ − Ω)
α∗

in,n

2|αin,n| [δX̃in,n(Ω) − iδỸin,n(Ω)]

+ Sm∗
k (Δ)α∗

in,mSn
k (Δ + Ω)

αin,n

2|αin,n| [δX̃in,n(Ω) + iδỸin,n(Ω)] (46)

Finally collecting terms:

|αou,k|δX̃ou,k(Ω) =
[
Sm

k (Δ)αin,mSn∗
k (Δ − Ω)

α∗
in,n

2|αin,n| + Sm∗
k (Δ)α∗

in,mSn
k (Δ + Ω)

αin,n

2|αin,n|
]

δX̃in,n(Ω)

+ i

[
Sm∗

k (Δ)α∗
in,mSn

k (Δ + Ω)
αin,n

2|αin,n| − Sm
k (Δ)αin,mSn∗

k (Δ − Ω)
α∗

in,n

2|αin,n|
]

δỸin,n(Ω) (47)

This is the most general relation connecting input phase and amplitude modulations to output amplitude mod-
ulations in a linear system.

Aside: pure phase or amplitude modulations on the carrier depend on the scattering parameters at both
upper (ω + Ω) and lower (ω −Ω) sidebands. This naturally arises due to generation of two sideband frequencies
produced when purely amplitude or phase modulating the carrier. Notably if the carrier is modulated such that
δỸin,j = ±iδX̃in,j, then only the lower or upper sideband is produced and the transfer function depends only
upon ω − Ω or ω + Ω respectively.

This transfer function contains many interference terms, as modulation terms originating from each of the
inputs are mixed with each other. However, if we have only have a single input and are concerned with just
a single output, then we can remove the indices in equation (47) and write (without the Δ dependence made
explicit):

|αou|δX̃ou(Ω) =
|αin|

2
[σ(0)σ∗(−Ω) + σ∗(0)σ(+Ω)]δX̃in

+
i|αin|

2
[σ∗(0)σ(+Ω) − σ(0)σ∗(−Ω)]δỸin (48)

where σ is the relevant scattering parameter between the input and output modes. Equation (48) may be written
in a more compact fashion:

|αou|δX̃ou(Ω) = |αin|
[
AδX̃in + iBδỸin

]
(49)

with the following parameters defined:

A = [σ(0)σ∗(−Ω) + σ∗(0)σ(+Ω)]/2 (50)
B = [σ∗(0)σ(+Ω) − σ(0)σ∗(−Ω)]/2 (51)

For the toroid-taper system under consideration, the two particular cases of interest are σ(Ω) = T (Ω); σ(Ω) =
R(Ω) (from (31)) for the forward and reverse scattered modes.

The detected signal spectral density can now be found straight-forwardly, in terms of the input variances:

s(Ω) = |αou|2〈δX̃†
ou(Ω)δX̃ou(Ω)〉 (52)

= |αin|2
[
A∗A〈δX̃†

inδX̃in〉 + B∗B〈δỸ †
inδỸin〉

+ A∗B〈δX̃†
inδỸin〉 + B∗A〈δỸ †

inδX̃in〉
]

(53)
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Figure 2. Normalised spectral density of detected signal for forward-scattered (transmitted) light. Shown on the left and
right are sensitivity to amplitude modulation and phase modulation respectively. A scattering rate equal to the intrinsic
decay rate is present. All frequencies normalised to the cavity decay rate and the cavity is critically coupled to the source.

For many noise generating processes, the phase and amplitude quadratures of the perturbation are not correlated,
hence we may write:

s(Ω) = |αin|2
[
A∗A〈δX̃†

inδX̃in〉 + B∗B〈δỸ †
inδỸin〉

]
(54)

Plots of the coefficients preceding the phase modulation and amplitude modulation terms for transmission are
shown in figure (2)

3.4 Cavity Noise
In addition to noise on the laser, noise will be introduced into the output by fluctuations of the cavity length.
These fluctuations may pricipally be induced by thermal fluctuations, c.f. thermo-refractive noise.10 By modi-
fying the equations of motion to allow for a modulation in the cavity length as a function of time we have the
following:

˙̃a+ = −(iΔ(t) + γt)ã+ − iβ∗ã− −
√

2γl̃in (55)
˙̃a− = −(iΔ(t) + γt)ã− − iβ ã+ −

√
2γr̃in (56)

now making the making the expansion about some stationary state:

ã(t) = α + δã(t) (57)
Δ(t) = Δ + δω(t) (58)

After linearisation and disregarding all other possible modulations, we may write:

δ̇ã+ = −(iΔ + γt)δã+ − iβ∗δã− − iα+δω (59)

δ̇ã− = −(iΔ + γt)δã− − iβ δã+ − iα−δω (60)

Linearity ensures we may additively introduce additional modulation terms later if required. Fourier transforming
these equations into matrix form gives:

(
η + iΩ iβ∗

iβ η + iΩ

) [
δã+(Ω)
δã−(Ω)

]
= −iδω(Ω)

[
α+

α−

]
(61)

This result is then combined with the steady-state cavity equations and the coupling equations:
(

η iβ∗

iβ η

) [
α+

α−

]
= −

√
2γ

[
l̃in
r̃in

]
(62)
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[
δr̃out

δl̃out

]
=

√
2γ

[
δã+

δã−

]
(63)

ultimately resulting in the following equation:
[
δr̃out

δl̃out

]
= δW(Ω)

[
r̃in

l̃in

]
(64)

with:

δW(Ω) =
2iγδω(Ω)

((η + iΩ)2 + |β|2)(η2 + |β|2)
(

η + iΩ −iβ∗

−iβ η + iΩ

) (−iβ∗ η
η −iβ

)
(65)

Of particular interest are the transmitted and reflected light transfer functions. For the transmitted light,
that is the term taking lin to δrout, the function may be explicitly written as follows:

δaT (Ω) =
2iγ[η(η + iΩ) − |β|2]

(η2 + |β|2)((η + iΩ)2 + |β|2)αinδω(Ω) (66)

and in the limit of small modulation frequency this becomes:

δaT (Ω) ≈ −2iγ

(η2 + |β|2)
[ |β|2 − η2

|β|2 + η2

]
αinδω(Ω) (67)

The same equation may be obtained by the substitution η → η + iδω and linearising the steady state equation
(23) in δω.

Similarly for the reflected light, corresponding to the scattering element transfering lin to δlout we have:

δaR(Ω) =
2γβ[2η + iΩ]

(η2 + |β|2)((η + iΩ)2 + |β|2)αinδω(Ω) (68)

and in the limit of small modulation frequency:

δaR(Ω) ≈ −2iγ

η2 + |β|2
[

2iβη

η2 + |β|2
]

αinδω(Ω) (69)

which again may be shown to be equal to the perturbative expansion of the relevant stationary state transfer
function. It is convenient to label the coefficient in front of the input field-modulation product (e.g. αinδω(Ω))
as a new variable δT (Ω). We can then easily find the detected signal caused by the modulation by writing the
output modulation in terms of the amplitude quadrature. That is:

δX̃ou(Ω) =
1

|T ||αin| [TδT ∗(−Ω)αinα∗
inδω†(−Ω) + T ∗δT (Ω)α∗

inαinδω(Ω)]

=
|αin|
|T | [TδT ∗(−Ω) + T ∗δT (Ω)]δω(Ω) (70)

=
|αin|
|T | CT δω(Ω) (71)

Hence for the transmitted light we have the signal:

s(Ω) = |αin|4|T |2CT C∗
T 〈δω†(Ω)δω(Ω)〉 (72)

with:
CT = TδT ∗(−Ω) + T ∗δT (Ω) (73)

Similarly in the case of reflection the detected signal becomes:

s(Ω) = |αin|4|R|2CRC∗
R〈δω†(Ω)δω(Ω)〉 (74)

with:
CR = RδR∗(−Ω) + R∗δR(Ω) (75)

Figure (3) is a plot of |R|2CRC∗
R and |T |2CT C∗

T respectively.
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Figure 3. Cavity-jitter induced output modulation. On the left and right are the normalised modulation amplitudes of the
reflected and transmitted light respectively. A scattering rate equal to the intrinsic decay rate is present. All frequencies
normalised to the cavity decay rate and the cavity is critically coupled to the source. Since modulations of the output
amplitude on resonance become second order, the transduction there approaches zero.

3.5 Defect Modulation
Similarly to the case of cavity jitter, the equations of motion are changed appropriately to allow for a modulation
in the scatters as a function of time:

˙̃a+ = −(iΔ + γt)ã+ − iβ(t)∗ã− −
√

2γl̃in (76)
˙̃a− = −(iΔ + γt)ã− − iβ(t) ã+ −

√
2γr̃in (77)

now making the making the expansion about some stationary state:

ã(t) = α + δã(t) (78)
β(t) = β0 + δβ(t) (79)

and disregarding modulations on the input, the linearised equations of motion may be written as follows:

δ̇ã+ = −(iΔ + γt)δã+ − iβ∗δã− − iα−δβ∗ (80)

δ̇ã− = −(iΔ + γt)δã− − iβ δã+ − iα+δβ (81)

Then Fourier transforming and recasting in matrix form gives:
(

η + iΩ iβ∗

iβ η + iΩ

) [
δã+(Ω)
δã−(Ω)

]
= −i

(
0 δβ∗(−Ω)

δβ(Ω) 0

) [
α+

α−

]
(82)

combining this result with the steady-state cavity equations and coupler equations respectively:
(

η iβ∗

iβ η

) [
α+

α−

]
= −

√
2γ

[
l̃in
r̃in

]
(83)

[
δr̃out

δl̃out

]
=

√
2γ

[
δã+

δã−

]
(84)

the transfer function may ultimately be written in the following matrix form:
[
δr̃out

δl̃out

]
= δG(Ω)

[
r̃in

l̃in

]
(85)
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where the transfer matrix (which contains the modulation terms) is given by:

δG(Ω) =

−2iγ

((η + iΩ)2 + |β|2)(η2 + |β|2)
(

η + iΩ −iβ∗

−iβ η + iΩ

) (
0 δβ∗(−Ω)

δβ(Ω) 0

) (−iβ∗ η
η −iβ

)
(86)

Writing out the modulation term specifically responsible for transmission from lin to δrout we have:

δaT (Ω) =
−2γ[(η + iΩ)βδβ∗(−Ω) + ηβ∗δβ(Ω)]

(η2 + |β|2)((η + iΩ)2 + |β|2) αin (87)

and, in the limit of Ω << Δ, the transfer function becomes:

δaT (Ω) =
−2γη[βδβ∗(−Ω) + β∗δβ(Ω)]

(η2 + |β|2)2 αin (88)

Equation 88 implies that slow modulation of the azimuthal position of the defect is to first order undetectable,
while slow modulations of the defect strength produces first order modulation of the output. Similarly for the
reflected light, corresponding to the scattering element transferring lin to δlout we have:

δaR(Ω) =
−2iγ[η(η + iΩ)δβ(Ω) − β2δβ∗(−Ω)]

(η2 + |β|2)((η + iΩ)2 + |β|2) αin (89)

which in the limit of small Ω becomes:

δaR(Ω) =
−2iγ[η2δβ(Ω) − β2δβ∗(−Ω)]

(η2 + |β|2)2 αin (90)

This function implies the modulation on the reflected light is first order sensitive to both the position and
strength of the scatting particles. In practice we wish to find the effect of the modulation of a single scatterer
on a system possessing a number of scattering particles. For an amplitude and phase modulation of a scatter
respectively we therefore have:

δβ(Ω) = eiφnδgn(Ω) (91)

δβ(Ω) = ieiφngnδφ(Ω) (92)

where we have applied a modulation on the nth scatterer, with scattering magnitude gn and phase φn. Hence
for the amplitude modulation from equations (87; 89) we have:

δaT (Ω) =
−2γ[ηβ∗eiφn + (η + iΩ)βe−iφn ]

(η2 + |β|2)((η + iΩ)2 + |β|2) δgn(Ω)αin (93)

and

δaR(Ω) =
2iγ[β2e−iφn − η(η + iΩ)eiφn ]
(η2 + |β|2)((η + iΩ)2 + |β|2) δgn(Ω)αin (94)

where we have identified δgn(Ω) = δg∗n(−Ω). Similarly for the phase modulation:

δaT (Ω) =
−2iγgn[ηβ∗eiφn − (η + iΩ)βe−iφn ]

(η2 + |β|2)((η + iΩ)2 + |β|2) δφn(Ω)αin (95)

and

δaR(Ω) =
2γgn[β2e−iφn + η(η + iΩ)eiφn ]
(η2 + |β|2)((η + iΩ)2 + |β|2) δφn(Ω)αin (96)

where again we have noted δφn(Ω) = δφ∗
n(−Ω). The detected signals for the possible phase and amplitude

modulations can be found as before using equation (71). Specifically, for the transmitted light we have:

s(Ω) = |αin|4|T |2Cφ
T Cφ∗

T 〈δφ†(Ω)δφ(Ω)〉 (97)

s(Ω) = |αin|4|T |2Cg
T Cg∗

T 〈δg†(Ω)δg(Ω)〉 (98)

Proc. of SPIE Vol. 8439  843911-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/06/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



C
ar

rie
r 

D
et

un
in

g

−10

−8

−6

−4

−2

0

2

4

6

8

10

Sideband Frequency

C
ar

rie
r 

D
et

un
in

g

0 5 10 15

−10

−8

−6

−4

−2

0

2

4

6

8

10

Sideband Frequency
0 5 10 15

Figure 4. Output modulation induced by defect motion. On the left and right are the normalised modulation amplitudes
of the transmitted light when the scatter is phase or amplitude modulated respectively. A scattering rate equal to the
intrinsic decay rate is present in addition to a time dependent scatter, of equal mean scattering rate. The phase angle
between the two scatters is changed by 3π/4 between the top and bottom plots.

with:

Cφ
T = T (0)δT φ∗(−Ω) + T ∗(0)δT φ(Ω) (99)

Cg
T = T (0)δT g∗(−Ω) + T ∗(0)δT g(Ω) (100)

where the δT ’s are the coefficients preceding the respective modulation terms in (93-96).

Some examples of the detected signals for the transmitted light under both phase and amplitude modulation
of the scatter are shown in figure (4). It is evident from the figure that under certain circumstances, phase and
amplitude modulation of the scatterer can produce near identical spectra on the detector. This is due to the fact
that, as stated earlier, the transmitted signal depends largely on the amplitude quadrature of the modulation of
the scattering parameter β. Dependent upon the relative orientation of the scatters, either a modulation in the
scattering strength or a modulation in the phase of the scatter will produce a modulation in the amplitude of β.

3.6 Combined Noise at the Detector

Due to the linearity of the effects previously outlined, they may be combined additively to produce the total
output modulation. That is we may write:

[
δr̃out

δl̃out

]
= S(Ω)

[
δr̃in

δl̃in

]
+ δG(Ω)

[
r̃in

l̃in

]
+ δW(Ω)

[
r̃in

l̃in

]
(101)

In the context of detection of the change of state of a scattering particle, the signal to noise may be computed
by comparing the magnitude of the appropriate quadratures of the δG (scatter) terms to the other terms in the
equation. Alternatively, in the context of detection of cavity resonance shifts in the presence of laser noise, the
magnitude of δW (cavity) terms may be compared to the laser noise terms.
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3.7 Summary

Using a matrix formalism we have shown the linearised influence of both laser and cavity noise on the output
signal of a fibre-coupled optical microresonator. Addtionally, using the same formalism, we have derived general
expressions for the signal strength produced by a modulated interaction with a scattering paticle. This treatment
includes the effect of both polarisability and binding location of the scattering particle and the effect of inter-
ference with existing (fixed) scatters. The formalism provides the tools to compare the sensitivity of different
detection methods, i.e. by comparing the signal-to-noise ratio.
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