457 research outputs found

    Structural precursor to freezing: An integral equation study

    Full text link
    Recent simulation studies have drawn attention to the shoulder which forms in the second peak of the radial distribution function of hard-spheres at densities close to freezing and which is associated with local crystalline ordering in the dense fluid. We address this structural precursor to freezing using an inhomogeneous integral equation theory capable of describing local packing constraints to a high level of accuracy. The addition of a short-range attractive interaction leads to a well known broadening of the fluid-solid coexistence region as a function of attraction strength. The appearence of a shoulder in our calculated radial distribution functions is found to be consistent with the broadened coexistence region for a simple model potential, thus demonstrating that the shoulder is not exclusively a high density packing effect

    Effect of mixing and spatial dimension on the glass transition

    Full text link
    We study the influence of composition changes on the glass transition of binary hard disc and hard sphere mixtures in the framework of mode coupling theory. We derive a general expression for the slope of a glass transition line. Applied to the binary mixture in the low concentration limits, this new method allows a fast prediction of some properties of the glass transition lines. The glass transition diagram we find for binary hard discs strongly resembles the random close packing diagram. Compared to 3D from previous studies, the extension of the glass regime due to mixing is much more pronounced in 2D where plasticization only sets in at larger size disparities. For small size disparities we find a stabilization of the glass phase quadratic in the deviation of the size disparity from unity.Comment: 13 pages, 8 figures, Phys. Rev. E (in print

    Density profiles of a colloidal liquid at a wall under shear flow

    Get PDF
    Using a dynamical density functional theory we analyze the density profile of a colloidal liquid near a wall under shear flow. Due to the symmetries of the system considered, the naive application of dynamical density functional theory does not lead to a shear induced modification of the equilibrium density profile, which would be expected on physical grounds. By introducing a physically motivated dynamic mean field correction we incorporate the missing shear induced interparticle forces into the theory. We find that the shear flow tends to enhance the oscillations in the density profile of hard-spheres at a hard-wall and, at sufficiently high shear rates, induces a nonequilibrium transition to a steady state characterized by planes of particles parallel to the wall. Under gravity, we find that the center-of-mass of the density distribution increases with shear rate, i.e., shear increases the potential energy of the particles

    Density functional theory and demixing of binary hard rod-polymer mixtures

    Full text link
    A density functional theory for a mixture of hard rods and polymers modeled as chains built of hard tangent spheres is proposed by combining the functional due to Yu and Wu for the polymer mixtures [J. Chem. Phys. {\bf 117}, 2368 (2002)] with the Schmidt's functional [Phys. Rev. E {\bf 63}, 50201 (2001)] for rod-sphere mixtures. As a simple application of the functional, the demixing transition into polymer-rich and rod-rich phases is examined. When the chain length increases, the phase boundary broadens and the critical packing fraction decreases. The shift of the critical point of a demixing transition is most noticeable for short chains.Comment: 4 pages,2 figures, in press, PR

    Effective interactions in active Brownian suspensions

    Get PDF
    Active colloids exhibit persistent motion, which can lead to motility-induced phase separation (MIPS). However, there currently exists no microscopic theory to account for this phenomenon. We report a first-principles theory, free of fit parameters, for active spherical colloids, which shows explicitly how an effective many-body interaction potential is generated by activity and how this can rationalize MIPS. For a passively repulsive system the theory predicts phase separation and pair correlations in quantitative agreement with simulation. For an attractive system the theory shows that phase separation becomes suppressed by moderate activity, consistent with recent experiments and simulations, and suggests a mechanism for reentrant cluster formation at high activity

    Accurate description of bulk and interfacial properties in colloid-polymer mixtures

    Full text link
    Large-scale Monte Carlo simulations of a phase-separating colloid-polymer mixture are performed and compared to recent experiments. The approach is based on effective interaction potentials in which the central monomers of self-avoiding polymer chains are used as effective coordinates. By incorporating polymer nonideality together with soft colloid-polymer repulsion, the predicted binodal is in excellent agreement with recent experiments. In addition, the interfacial tension as well as the capillary length are in quantitative agreement with experimental results obtained at a number of points in the phase-coexistence region, without the use of any fit parametersComment: 4 pages, 4 figure

    Simulation and theory of fluid demixing and interfacial tension of mixtures of colloids and non-ideal polymers

    Full text link
    An extension of the Asakura-Oosawa-Vrij model of hard sphere colloids and non-adsorbing polymers, that takes polymer non-ideality into account through a repulsive stepfunction pair potential between polymers, is studied with grand canonical Monte Carlo simulations and density functional theory. Simulation results validate previous theoretical findings for the shift of the bulk fluid demixing binodal upon increasing strength of polymer-polymer repulsion, promoting the tendency to mix. For increasing strength of the polymer-polymer repulsion, simulation and theory consistently predict the interfacial tension of the free colloidal liquid-gas interface to decrease significantly for fixed colloid density difference in the coexisting phases, and to increase for fixed polymer reservoir packing fraction.Comment: 10 pages, 4 figure

    Equilibrium properties of highly asymmetric star-polymer mixtures

    Full text link
    We employ effective interaction potentials to study the equilibrium structure and phase behavior of highly asymmetric mixtures of star polymers. We consider in particular the influence of the addition of a component with a small number of arms and a small size on a concentrated solution of large stars with a high functionality. By employing liquid integral equation theories we examine the evolution of the correlation functions of the big stars upon addition of the small ones, finding a loss of structure that can be attributed to a weakening of the repulsions between the large stars due to the presence of the small ones. We analyze this phenomenon be means of a generalized depletion mechanism which is supported by computer simulations. By applying thermodynamic perturbation theory we draw the phase diagram of the asymmetric mixture, finding that the addition of small stars melts the crystal formed by the big ones. A systematic comparison between the two- and effective one-component descriptions of the mixture that corroborates the reliability of the generalized depletion picture is also carried out.Comment: 26 pages, 9 figures, submitted to Phys. Rev.

    Dynamic Glass Transition in Two Dimensions

    Full text link
    The question about the existence of a structural glass transition in two dimensions is studied using mode coupling theory (MCT). We determine the explicit d-dependence of the memory functional of mode coupling for one-component systems. Applied to two dimensions we solve the MCT equations numerically for monodisperse hard discs. A dynamic glass transition is found at a critical packing fraction phi_c^{d=2} = 0.697 which is above phi_c^{d=3} = 0.516 by about 35%. phi^d_c scales approximately with phi^d_{\rm rcp} the value for random close packing, at least for d=2, 3. Quantities characterizing the local, cooperative 'cage motion' do not differ much for d=2 and d=3, and we e.g. find the Lindemann criterion for the localization length at the glass transition. The final relaxation obeys the superposition principle, collapsing remarkably well onto a Kohlrausch law. The d=2 MCT results are in qualitative agreement with existing results from MC and MD simulations. The mean squared displacements measured experimentally for a quasi-two-dimensional binary system of dipolar hard spheres can be described satisfactorily by MCT for monodisperse hard discs over four decades in time provided the experimental control parameter Gamma (which measures the strength of dipolar interactions) and the packing fraction phi are properly related to each other.Comment: 14 pages, 15 figure

    Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility and coexistence diameter

    Full text link
    The critical behavior of a model colloid-polymer mixture, the so-called AO model, is studied using computer simulations and finite size scaling techniques. Investigated are the interfacial tension, the order parameter, the susceptibility and the coexistence diameter. Our results clearly show that the interfacial tension vanishes at the critical point with exponent 2\nu ~ 1.26. This is in good agreement with the 3D Ising exponent. Also calculated are critical amplitude ratios, which are shown to be compatible with the corresponding 3D Ising values. We additionally identify a number of subtleties that are encountered when finite size scaling is applied to the AO model. In particular, we find that the finite size extrapolation of the interfacial tension is most consistent when logarithmic size dependences are ignored. This finding is in agreement with the work of Berg et al.[Phys. Rev. B, V47 P497 (1993)]Comment: 13 pages, 16 figure
    • …
    corecore