617 research outputs found

    Inflationary spacetimes are not past-complete

    Full text link
    Many inflating spacetimes are likely to violate the weak energy condition, a key assumption of singularity theorems. Here we offer a simple kinematical argument, requiring no energy condition, that a cosmological model which is inflating -- or just expanding sufficiently fast -- must be incomplete in null and timelike past directions. Specifically, we obtain a bound on the integral of the Hubble parameter over a past-directed timelike or null geodesic. Thus inflationary models require physics other than inflation to describe the past boundary of the inflating region of spacetime.Comment: We improve the basic argument to apply to a wider class of spacetimes, use a better title and add a discussion of cyclic models. 4 pages, 1 figure, RevTe

    Updated results on prototype chalcogenide fibers for 10-um wavefront spatial filtering

    Full text link
    The detection of terrestrial planets by Darwin/TPF missions will require extremely high quality wavefronts. Single-mode fibers have proven to be powerful beam cleaning components in the near-infrared, but are currently not available in the mid-infrared where they would be critically needed for Darwin/TPF. In this paper, we present updated measurements on the prototype chalcogenide fibers we are developing for the purpose of mid-infrared spatial filtering. We demonstrate the guiding property of our 3rd generation component and we characterize its filtering performances on a 4 mm length: the far-field radiation pattern matches a Gaussian profile at the level of 3% rms and 13% pk-pk.Comment: 4 pages, 5 figures, to appear in the proceedings of the conference "Toward Other Earths, Darwin/TPF and the search for extrasolar terrestrial planets", held in Heidelberg, Germany, 22-25 April 2003, ESA SP-53

    Neutrino oscillations in a stochastic model for space-time foam

    Full text link
    We study decoherence models for flavour oscillations in four-dimensional stochastically fluctuating space times and discuss briefly the sensitivity of current neutrino experiments to such models. We pay emphasis on demonstrating the model dependence of the associated decoherence-induced damping coefficients in front of the oscillatory terms in the respective transition probabilities between flavours. Within the context of specific models of foam, involving point-like D-branes and leading to decoherence-induced damping which is inversely proportional to the neutrino energies, we also argue that future limits on the relevant decoherence parameters coming from TeV astrophysical neutrinos, to be observed in ICE-CUBE, are not far from theoretically expected values with Planck mass suppression. Ultra high energy neutrinos from Gamma Ray Bursts at cosmological distances can also exhibit in principle sensitivity to such effects.Comment: 12 pages RevTex4, no figure

    VINCI / VLTI observations of Main Sequence stars

    Full text link
    Main Sequence (MS) stars are by far the most numerous class in the Universe. They are often somewhat neglected as they are relatively quiet objects (but exceptions exist), though they bear testimony of the past and future of our Sun. An important characteristic of the MS stars, particularly the solar-type ones, is that they host the large majority of the known extrasolar planets. Moreover, at the bottom of the MS, the red M dwarfs pave the way to understanding the physics of brown dwarfs and giant planets. We have measured very precise angular diameters from recent VINCI/VLTI interferometric observations of a number of MS stars in the K band, with spectral types between A1V and M5.5V. They already cover a wide range of effective temperatures and radii. Combined with precise Hipparcos parallaxes, photometry, spectroscopy as well as the asteroseismic information available for some of these stars, the angular diameters put strong constraints on the detailed models of these stars, and therefore on the physical processes at play.Comment: 5 pages, 3 figures. To appear in the Proceedings of IAU Symposium 219, "Stars as Suns", Editors A. Benz & A. Dupree, Astronomical Society of the Pacifi

    Non-Singular Charged Black Hole Solution for Non-Linear Source

    Get PDF
    A non-singular exact black hole solution in General Relativity is presented. The source is a non-linear electromagnetic field, which reduces to the Maxwell theory for weak field. The solution corresponds to a charged black hole with |q| \leq 2s_c m \approx 0.6 m, having metric, curvature invariants, and electric field bounded everywhere.Comment: 3 pages, RevTe

    Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics

    Get PDF
    The first regular exact black hole solution in General Relativity is presented. The source is a nonlinear electrodynamic field satisfying the weak energy condition, which in the limit of weak field becomes the Maxwell field. The solution corresponds to a charged black hole with |q| \leq 2 s_c m \approx 0.6 m, having the metric, the curvature invariants, and the electric field regular everywhere.Comment: 5 pages, RevTex, 6 figure

    Rationale for the use of color information on Eddington

    Get PDF
    For the Eddington mission, the intrinsic stellar variability can be a major source of noise in the detection of extrasolar planets by the transit method. We derive that most detections of terrestrial planets (1-2 R_Earth) will occur around G or K stars with 15-16th magnitude. When these stars are 7-12 times more variable than the Sun on a 10 hour timescale, we demonstrate that the detection can be performed with a higher S/N provided composite lightcurves obtained with the combination of two colors are used instead of white ones. The level of 10 hour variability for K stars is quite uncertain. We make two "guess-estimates" of it and find that it could be several times larger than the solar value. If these estimates were relevant, the color information would not provide a significant advantage. Although we do not demonstrate a need for colors, we point out the risk of an unpleasant surprise regarding the 10 hour stellar variability. Indeed, there is presently no qualified proxy for this variability. Besides, if Eddington were designed to provide this information at the cost of added complexity but not sensitivity, white photometry by channel summation would still be as efficient. Considering the risk that 10 hour variability is higher than estimated, the Precaution Imperative points to a study of practical implementations of photometry in different colors before taking irreversible decisions about the Eddington instrument.Comment: Submitted to A&A as a Research Not

    Open and Closed Universes, Initial Singularities and Inflation

    Full text link
    The existence of initial singularities in expanding universes is proved without assuming the timelike convergence condition. The assumptions made in the proof are ones likely to hold both in open universes and in many closed ones. (It is further argued that at least some of the expanding closed universes that do not obey a key assumption of the theorem will have initial singularities on other grounds.) The result is significant for two reasons: (a)~previous closed-universe singularity theorems have assumed the timelike convergence condition, and (b)~the timelike convergence condition is known to be violated in inflationary spacetimes. An immediate consequence of this theorem is that a recent result on initial singularities in open, future-eternal, inflating spacetimes may now be extended to include many closed universes. Also, as a fringe benefit, the time-reverse of the theorem may be applied to gravitational collapse.Comment: 27 pages, Plain TeX (figures are embedded in the file itself and they will emerge if it is processed according to the instructions at the top of the file

    Eternal inflation and the initial singularity

    Full text link
    It is shown that a physically reasonable spacetime that is eternally inflating to the future must possess an initial singularity.Comment: 11 pages, Tufts University cosmology preprin

    Modeling of Alpha Cen and Procyon using VLTI observations

    Full text link
    We present a novel approach to model the nearby stars Alpha Cen A & B and Procyon A using asteroseismic and interferometric constraints. Using the VINCI instrument installed at the VLT Interferometer (VLTI), the angular diameters of the Alpha Centauri system were measured with a relative precision of 0.2% and 0.6%, respectively. From these values, we derive linear radii of R[A] = 1.224 +/- 0.003 R_sun and R[B] = 0.863 +/- 0.005 R_sun. These radii are in excellent agreement with the models of Thevenin et al. (2002), that use asteroseismic frequencies as constraints (Bouchy & Carrier 2001; Bouchy & Carrier 2002). With the same instrument, we also measured the angular diameter of Procyon A. Using the Hipparcos parallax, we obtain a linear radius of 2.048 +/- 0.025 R_sun. We use this result together with spectroscopic and photometric constraints to model this star with the CESAM code. We also computed the adiabatic oscillation spectrum of our model of Procyon A, giving a mean large frequency separation of Delta nu_0 = 54.8 uHz, in agreement with the seismic observations by Martic et al. (2001). Our model favours a mass around 1.4 M_sun for Procyon A.Comment: 8 pages, 5 figures, poster presented at the JD 12 of the IAU General Assembly, Sydney 200
    corecore