2,920 research outputs found
Long-time behavior of MHD shell models
The long time behavior of velocity-magnetic field alignment is numerically
investigated in the framework of MHD shell model. In the stationary forced
case, the correlation parameter C displays a nontrivial behavior with long
periods of high variability which alternates with periods of almost constant C.
The temporal statistics of correlation is shown to be non Poissonian, and the
pdf of constant sign periods displays clear power law tails. The possible
relevance of the model for geomagnetic dynamo problem is discussed.Comment: 6 pages with 5 figures. In press on Europhysics Letter
Closure of two dimensional turbulence: the role of pressure gradients
Inverse energy cascade regime of two dimensional turbulence is investigated
by means of high resolution numerical simulations. Numerical computations of
conditional averages of transverse pressure gradient increments are found to be
compatible with a recently proposed self-consistent Gaussian model. An
analogous low order closure model for the longitudinal pressure gradient is
proposed and its validity is numerically examined. In this case numerical
evidence for the presence of higher order terms in the closure is found. The
fundamental role of conditional statistics between longitudinal and transverse
components is highlighted.Comment: 4 pages, 2 figures, in press on PR
Statistical Mechanics of Shell Models for 2D-Turbulence
We study shell models that conserve the analogues of energy and enstrophy,
hence designed to mimic fluid turbulence in 2D. The main result is that the
observed state is well described as a formal statistical equilibrium, closely
analogous to the approach to two-dimensional ideal hydrodynamics of Onsager,
Hopf and Lee. In the presence of forcing and dissipation we observe a forward
flux of enstrophy and a backward flux of energy. These fluxes can be understood
as mean diffusive drifts from a source to two sinks in a system which is close
to local equilibrium with Lagrange multipliers (``shell temperatures'')
changing slowly with scale. The dimensional predictions on the power spectra
from a supposed forward cascade of enstrophy, and from one branch of the formal
statistical equilibrium, coincide in these shell models at difference to the
corresponding predictions for the Navier-Stokes and Euler equations in 2D. This
coincidence have previously led to the mistaken conclusion that shell models
exhibit a forward cascade of enstrophy.Comment: 25 pages + 9 figures, TeX dialect: RevTeX 3.
Statistics of finite-time Lyapunov exponents in the Ulam map
The statistical properties of finite-time Lyapunov exponents at the Ulam
point of the logistic map are investigated. The exact analytical expression for
the autocorrelation function of one-step Lyapunov exponents is obtained,
allowing the calculation of the variance of exponents computed over time
intervals of length . The variance anomalously decays as . The
probability density of finite-time exponents noticeably deviates from the
Gaussian shape, decaying with exponential tails and presenting spikes
that narrow and accumulate close to the mean value with increasing . The
asymptotic expression for this probability distribution function is derived. It
provides an adequate smooth approximation to describe numerical histograms
built for not too small , where the finiteness of bin size trimmes the sharp
peaks.Comment: 6 pages, 4 figures, to appear in Phys. Rev.
Relative dispersion in fully developed turbulence: The Richardson's Law and Intermittency Corrections
Relative dispersion in fully developed turbulence is investigated by means of
direct numerical simulations. Lagrangian statistics is found to be compatible
with Richardson description although small systematic deviations are found. The
value of the Richardson constant is estimated as , in a close
agreement with recent experimental findings [S. Ott and J. Mann J. Fluid Mech.
{\bf 422}, 207 (2000)]. By means of exit-time statistics it is shown that the
deviations from Richardson's law are a consequence of Eulerian intermittency.
The measured Lagrangian scaling exponents require a set of Eulerian structure
function exponents which are remarkably close to standard ones
known for fully developed turbulence
Acceleration and vortex filaments in turbulence
We report recent results from a high resolution numerical study of fluid
particles transported by a fully developed turbulent flow. Single particle
trajectories were followed for a time range spanning more than three decades,
from less than a tenth of the Kolmogorov time-scale up to one large-eddy
turnover time. We present some results concerning acceleration statistics and
the statistics of trapping by vortex filaments.Comment: 10 pages, 5 figure
Dynamics and statistics of heavy particles in turbulent flows
We present the results of Direct Numerical Simulations (DNS) of turbulent
flows seeded with millions of passive inertial particles. The maximum Taylor's
Reynolds number is around 200. We consider particles much heavier than the
carrier flow in the limit when the Stokes drag force dominates their dynamical
evolution. We discuss both the transient and the stationary regimes. In the
transient regime, we study the growt of inhomogeneities in the particle spatial
distribution driven by the preferential concentration out of intense vortex
filaments. In the stationary regime, we study the acceleration fluctuations as
a function of the Stokes number in the range [0.16:3.3]. We also compare our
results with those of pure fluid tracers (St=0) and we find a critical behavior
of inertia for small Stokes values. Starting from the pure monodisperse
statistics we also characterize polydisperse suspensions with a given mean
Stokes.Comment: 13 pages, 10 figures, 2 table
Chaos or Noise - Difficulties of a Distinction
In experiments, the dynamical behavior of systems is reflected in time
series. Due to the finiteness of the observational data set it is not possible
to reconstruct the invariant measure up to arbitrary fine resolution and
arbitrary high embedding dimension. These restrictions limit our ability to
distinguish between signals generated by different systems, such as regular,
chaotic or stochastic ones, when analyzed from a time series point of view. We
propose to classify the signal behavior, without referring to any specific
model, as stochastic or deterministic on a certain scale of the resolution
, according to the dependence of the -entropy,
, and of the finite size Lyapunov exponent,
, on .Comment: 24 pages RevTeX, 9 eps figures included, two references added, minor
corrections, one section has been split in two (submitted to PRE
The Richardson's Law in Large-Eddy Simulations of Boundary Layer flows
Relative dispersion in a neutrally stratified planetary boundary layer (PBL)
is investigated by means of Large-Eddy Simulations (LES). Despite the small
extension of the inertial range of scales in the simulated PBL, our Lagrangian
statistics turns out to be compatible with the Richardson law for the
average of square particle separation. This emerges from the application of
nonstandard methods of analysis through which a precise measure of the
Richardson constant was also possible. Its values is estimated as
in close agreement with recent experiments and three-dimensional direct
numerical simulations.Comment: 15 LaTex pages, 4 PS figure
Diffusion entropy and waiting time statistics of hard x-ray solar flares
We analyze the waiting time distribution of time distances between two
nearest-neighbor flares. This analysis is based on the joint use of two
distinct techniques. The first is the direct evaluation of the distribution
function , or of the probability, , that no time
distance smaller than a given is found. We adopt the paradigm of the
inverse power law behavior, and we focus on the determination of the inverse
power index , without ruling out different asymptotic properties that
might be revealed, at larger scales, with the help of richer statistics. The
second technique, called Diffusion Entropy (DE) method, rests on the evaluation
of the entropy of the diffusion process generated by the time series. The
details of the diffusion process depend on three different walking rules, which
determine the form and the time duration of the transition to the scaling
regime, as well as the scaling parameter . With the first two rules the
information contained in the time series is transmitted, to a great extent, to
the transition, as well as to the scaling regime. The same information is
essentially conveyed, by using the third rules, into the scaling regime, which,
in fact, emerges very quickly after a fast transition process. We show that the
significant information hidden within the time series concerns memory induced
by the solar cycle, as well as the power index . The scaling parameter
becomes a simple function of , when memory is annihilated. Thus,
the three walking rules yield a unique and precise value of if the memory
is wisely taken under control, or cancelled by shuffling the data. All this
makes compelling the conclusion that .Comment: 23 pages, 13 figure
- …
