11,444 research outputs found
Second-Order Dynamics in the Collective Evolution of Coupled Maps and Automata
We review recent numerical studies and the phenomenology of spatially
synchronized collective states in many-body dynamical systems. These states
exhibit thermodynamic noise superimposed on the collective, quasiperiodic order
parameter evolution with typically one basic irrational frequency. We
concentrate on the description of the global temporal properties in terms of
second-order difference equations.Comment: 11 pages (plain TeX), 4 figures (PostScript), preprint OUTP-92-51
Studying Spin-Orbit Dynamics using Measurements of the Proton's Polarized Gluon Asymmetry
Measurements involving the gluon spin density, Delta G=G++ - G+-, can play an
important role in the quantitative understanding of proton structure. To
demonstrate this, we show that the shape of the gluon asymmetry, A(x,t)=Delta
G(x,t)/G(x,t), contains significant dynamical information about
non-perturbative spin-orbit effects. It is instructive to use a separation
A(x,t)=A_0^epsilon(x)+epsilon(x,t), where A_0^epsilon(x) is an approximately
scale-invariant form that can be calculated within a given factorization
prescription from the measured distributions Delta q(x,t), q(x,t) and G(x,t).
Applying this separation with the J_z=1/2 sum rule provides a convenient way to
determine the total amount of orbital angular momentum generated by mechanisms
associated with confinement and chiral dynamics. The results are consistent
with alternate non-perturbative approaches to the determination of orbital
angular momentum in the proton. Our studies help to specify the accuracy that
future measurements should achieve to constrain theoretical models for nucleon
structure.Comment: 24 pages, 3 figure
Orientational correlations and the effect of spatial gradients in the equilibrium steady state of hard rods in 2D : A study using deposition-evaporation kinetics
Deposition and evaporation of infinitely thin hard rods (needles) is studied
in two dimensions using Monte Carlo simulations. The ratio of deposition to
evaporation rates controls the equilibrium density of rods, and increasing it
leads to an entropy-driven transition to a nematic phase in which both static
and dynamical orientational correlation functions decay as power laws, with
exponents varying continuously with deposition-evaporation rate ratio. Our
results for the onset of the power-law phase agree with those for a conserved
number of rods. At a coarse-grained level, the dynamics of the non-conserved
angle field is described by the Edwards-Wilkinson equation. Predicted relations
between the exponents of the quadrupolar and octupolar correlation functions
are borne out by our numerical results. We explore the effects of spatial
inhomogeneity in the deposition-evaporation ratio by simulations, entropy-based
arguments and a study of the new terms introduced in the free energy. The
primary effect is that needles tend to align along the local spatial gradient
of the ratio. A uniform gradient thus induces a uniformly aligned state, as
does a gradient which varies randomly in magnitude and sign, but acts only in
one direction. Random variations of deposition-evaporation rates in both
directions induce frustration, resulting in a state with glassy
characteristics.Comment: modified version, Accepted for publication in Physical Review
Spontaneous creation of discrete breathers in Josephson arrays
We report on the experimental generation of discrete breather states
(intrinsic localized modes) in frustrated Josephson arrays. Our experiments
indicate the formation of discrete breathers during the transition from the
static to the dynamic (whirling) system state, induced by a uniform external
current. Moreover, spatially extended resonant states, driven by a uniform
current, are observed to evolve into localized breather states. Experiments
were performed on single Josephson plaquettes as well as open-ended Josephson
ladders with 10 and 20 cells. We interpret the breather formation as the result
of the penetration of vortices into the system.Comment: 5 pages, 5 figure
Integrated controls and health monitoring for chemical transfer propulsion
NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed
Soliton Staircases and Standing Strain Waves in Confined Colloidal Crystals
We show by computer simulation of a two-dimensional crystal confined by
corrugated walls that confinement can be used to impose a controllable
mesoscopic superstructure of predominantly mechanical elastic character. Due to
an interplay of the particle density of the system and the width D of the
confining channel, "soliton staircases" can be created along both parallel
confining boundaries, that give rise to standing strain waves in the entire
crystal. The periodicity of these waves is of the same order as D. This
mechanism should be useful for structure formation in the self-assembly of
various nanoscopic materials.Comment: 22 pages, 5 figure
A candidate architecture for monitoring and control in chemical transfer propulsion systems
To support the exploration of space, a reusable space-based rocket engine must be developed. This engine must sustain superior operability and man-rated levels of reliability over several missions with limited maintenance or inspection between flights. To meet these requirements, an expander cycle engine incorporating a highly capable control and health monitoring system is planned. Alternatives for the functional organization and the implementation architecture of the engine's monitoring and control system are discussed. On the basis of this discussion, a decentralized architecture is favored. The trade-offs between several implementation options are outlined and future work is proposed
Static and Dynamic Critical Behavior of a Symmetrical Binary Fluid: A Computer Simulation
A symmetrical binary, A+B Lennard-Jones mixture is studied by a combination
of semi-grandcanonical Monte Carlo (SGMC) and Molecular Dynamics (MD) methods
near a liquid-liquid critical temperature . Choosing equal chemical
potentials for the two species, the SGMC switches identities () to generate well-equilibrated configurations of the system on
the coexistence curve for and at the critical concentration, ,
for . A finite-size scaling analysis of the concentration susceptibility
above and of the order parameter below is performed, varying the
number of particles from N=400 to 12800. The data are fully compatible with the
expected critical exponents of the three-dimensional Ising universality class.
The equilibrium configurations from the SGMC runs are used as initial states
for microcanonical MD runs, from which transport coefficients are extracted.
Self-diffusion coefficients are obtained from the Einstein relation, while the
interdiffusion coefficient and the shear viscosity are estimated from
Green-Kubo expressions. As expected, the self-diffusion constant does not
display a detectable critical anomaly. With appropriate finite-size scaling
analysis, we show that the simulation data for the shear viscosity and the
mutual diffusion constant are quite consistent both with the theoretically
predicted behavior, including the critical exponents and amplitudes, and with
the most accurate experimental evidence.Comment: 35 pages, 13 figure
- …