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Orientational correlations and the effect of spatial gradients in the equilibrium steady
state of hard rods in 2D : A study using deposition-evaporation kinetics
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Deposition and evaporation of infinitely thin hard rods (needles) is studied in two dimensions
using Monte Carlo simulations. The ratio of deposition to evaporation rates controls the equilibrium
density of rods, and increasing it leads to an entropy-driven transition to a nematic phase in which
both static and dynamical orientational correlation functions decay as power laws, with exponents
varying continuously with deposition-evaporation rate ratio. Our results for the onset of the power-
law phase agree with those for a conserved number of rods. At a coarse-grained level, the dynamics
of the non-conserved angle field is described by the Edwards-Wilkinson equation. Predicted relations
between the exponents of the quadrupolar and octupolar correlation functions are borne out by our
numerical results. We explore the effects of spatial inhomogeneity in the deposition-evaporation
ratio by simulations, entropy-based arguments and a study of the new terms introduced in the free
energy. The primary effect is that needles tend to align along the local spatial gradient of the ratio.
A uniform gradient thus induces a uniformly aligned state, as does a gradient which varies randomly
in magnitude and sign, but acts only in one direction. Random variations of deposition-evaporation
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rates in both directions induce frustration, resulting in a state with glassy characteristics.

PACS numbers: 64.60.Cn
I. INTRODUCTION

An assembly of particles interacting via hard-core re-
pulsion serves as a useful model for studying simple flu-
ids, colloids, liquid crystals and many other soft matter
systems. The analysis of such model systems helps in
understanding the features of real systems, such as their
phase behaviour, structural and dynamic properties. An
important role is played by the anisotropy of shape of
the constituent particles, which can range from thick
elongated platelets to thin rods. Some examples of sys-
tems in which the constituent particles show anisotropy
are certain types of colloids, liquid crystals and protein
molecules. In particular, rod-like particles are found in
suspensions of the tobacco mosaic virus ﬂ], nematic lig-
uid crystals E] and, recently, carbon nanotube gels B]
All these systems show very rich and characteristic phase
behaviour.

Rod-like particles have been modeled theoretically as
ellipses M|, rectangles and spherocylinders [d, |, ] with
varying aspect ratios, a limiting case being infinitely thin
hard rods or needles B] These systems exhibit a num-
ber of interesting entropy-driven phase transitions which
have been studied in two and three dimensions, usu-
ally using simulations with number-conserving dynam-
ics. On the other hand, there are a number of physical
processes which involve adsorption (deposition) and des-
orption (evaporation) of particles, which do not conserve
particle number and which are important for some mono-
layer growth processes. Adsorption and desorption are
also important in the binding/unbinding of ligands to mi-
crotubules, the interaction of proteins with DNA [d, [1d]
and many catalytic reactions. Finally, in recent exper-
iments on assemblies of long objects (rice grains, thin

metal rods) on a vibrating plate [11], individual particles
jump off and return to the plate, leading ultimately to
a state with interesting patterns. These considerations
motivate us to study the deposition and evaporation of
hard objects with rigid boundaries on a substrate. While
a deposition-only system, of the type studied in random
sequential adsorption 9], can end up in a non-evolving
jammed configuration, with the addition of evaporation,
the system eventually reaches an equilibrium steady state
with a density governed by the rates of deposition and
evaporation [12-17]. While most of these studies have fo-
cussed on the kinetics of approach to steady state, in this
paper, we are interested in the properties of the steady
state itself. Specifically, we study the patterns formed
due to deposition and evaporation of infinitely thin hard
rods (needles) on a 2D substrate. Needles are a limiting
case of rod like particles in the systems mentioned earlier.
Though not directly applicable to any physical system,
this is an important limiting case; the limit of zero width
simplifies the problem by eliminating the aspect ratio as
a parameter. The hard core constraint is enforced by re-
jecting any deposition event which results in an overlap
of needles.

It is useful to recall some known facts about a sys-
tem of hard needles with no externally imposed spatial
inhomogeneities. This system shows a transition from
a low-density orientationally disordered (isotropic) state
to a high-density ordered state with nematic correlations.
This transition, whose existence was pointed out by On-
sager ﬂﬂ], can be viewed as an outcome of the interplay
between orientational and translational entropy of the
needles; the ordered (aligned) state is preferred at high
density since alignment leads to an increase of transla-
tional entropy, albeit at the cost of orientational entropy.
The nature of the orientational ordering is dimension-
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dependent. In three dimensions, orientational long range
order (LRO) sets in. A state with LRO would break the
continuous symmetry of rotations, and is thus not ex-
pected to occur in 2D, even though the Mermin-Wagner
theorem cannot be generalized to this system [19]. In-
deed, the simulation study of Frenkel and Eppenga [8]
on a system with a fixed number of needles confirms the
absence of LRO in 2D, and finds a phase with power-law
decays of orientational correlations, quite analogously to
the XY model [20].

On a coarse-grained scale, the local orientation at loca-
tion r and time ¢ is specified by an angle field 6(r, ). The
orientational correlation functions of interest are defined
as

ge(r,t) = (cos[€(6(r, 1) — 0(0,0))]) (1)

where { is an even integer, and 6 and 6 4 7 represent the
same state. Quadrupolar correlations are probed by ¢ =
2, whereas higher values of ¢ correspond to higher mul-
tipolarities. From numerical simulations, we find power
law decays in both space and time: g¢(r,0) ~ =" and
g0(0,t) ~ t=P¢ for both ¢ = 2 and 4. Our results for
the static correlations conform to the Kosterlitz-Thouless
theory for the onset of correlations, while our results for
the dynamics show that their decay in time is governed by
the Edwards-Wilkinson equation. We also study spatial
variations of the deposition rate, and find strong effects
on the nature of the ordering. We consider several types
of variations: (i) a sharp change across a linear interface
; (ii) a smooth linear gradient; (iii) a random variation of
rates in one direction and (iv) random variation of rates
in the plane. We find that the qualitative effect of spatial
variations is to induce alignment of needles in the direc-
tion of gradient, an effect with an entropic origin. In
(i), the effect dies down slowly with increasing distance
from the interface, but in cases (ii) and (iii) it results
in a state with overall alignment along the direction of
variation of the deposition rate. The random variation
in (iv) induces frustration and the result is then a state
with glassy features such as strong initial condition de-
pendence and slow relaxation.

II. MODEL AND PROCEDURE

In our model, infinitely thin hard rods (needles) are
added to a 2D substrate with area A with a constant at-
tempt rate, and simultaneously removed randomly from
the substrate with a specified rate. In a deposition at-
tempt, the location of the centre of mass of the needle is
chosen at random on the substrate, and the orientation
angle is chosen at random as well. Let I'; be the rate
of attempted depositions per unit area per unit angle in-
terval. An attempt is successful only if the depositing
needle in question would not overlap with existing nee-
dles on the substrate; otherwise it is rejected.

During evaporation, a needle is chosen at random from
those present on the substrate and then removed. If the

total rate of such removals is R, we may associate a re-
_ R. . . .

moval rz.mte I'e =54 per unit area per unit angle interval.

The ratio
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(2)
of deposition to evaporation rates is the control param-
eter in the problem. As we show below, x is related to
the fugacity z = e”# of an equilibrium grand canonical
system.

The model under consideration can be thought of as
describing the adsorption and release of needle-like gas
molecules on a substrate in contact with a gas reservoir
with which it can exchange particles. The equilibrium
state on the substrate is then described by the grand
canonical (uAT) ensemble, where p, A and T are respec-
tively the chemical potential, substrate area and temper-
ature. Define scaled coordinates s; = r;/L, where r; is
the position of the i*" particle on the substrate and L is
the linear dimension of the system. The grand canonical
partition function can be written [21] as
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where A = (732—2;)1/ 2 is the thermal wavelength which
results from integrating over the momentum of needles,
and U is the interaction energy for a configuration in
which there are N needles with scaled centre of mass lo-
cations (s1, s2, ...sn) and orientations (01, 0s, ....0x). The
corresponding equilibrium probability density of a con-
figuration C' = (s1, 82, ...sN, 01,02, ....0N) is [21]

_ 1 2N
=zl

For our system of hard core needles, the interaction en-
ergy U — oo when needles overlap, while U = 0 when
there is no overlap between any needles. Thus all allowed
configurations with fixed N have equal weights.

Deposition - evaporation dynamics involves changes of
N. The evolution from a configuration C to a configura-
tion C’ can be described by the master equation

Peq(c) A/A2)Ne—BU(sl,sz,...sN,Gl,Gg,....é)N) (4)
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The steady state of Eq. (H), obtained by setting ag(tc)
= 0, is in fact an equilibrium state if the condition of

detailed balance
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 Py(O)
= Py(C) (6)




is satisfied for every pair of configurations C' and C” that
can be reached from each other. Now, let C' denote an
N-needle configuration and let C’ be the (N — 1)-needle
configuration obtained from C' by removing a particular
needle. Using Eq. @) in Eq.(d), we see that ;—Z = AZ;}‘V.
Thus, the steady state of deposition-evaporation dynam-
ics is described by the grand canonical equilibrium state

with

K= Az (7)
where p = % is the areal density of needles.

In our Monte Carlo studies we varied the control pa-
rameter £ in the range 1 to 40 and monitored the re-
sulting density and orientational correlations. We used
an L x L substrate (with L = 15 and 25) where L is in
units of needle length. For each value of k we made mul-
tiple runs, allowing up to 107 Monte Carlo time steps for
equilibration. The Monte Carlo time ¢ is defined as the
number of attempts divided by L?. Averaging was done
over 10 sets of independent runs and 1000 configurations
from each run after equilibration.

Figure[l(a)|shows the variations of the density with &,
while Fig. [L(b)] shows p plotted against z/A? = pk. The
inset in Fig. [1(a)| shows a marked change in the depen-
dence of p/(k — 1) on & for x in the range 20-25. As we
shall see, there is a transition to a phase with power law
decay of orientational correlations beyond x = k. ~ 25,
as illustrated by the representative configurations shown
in Fig. A for different values of k. We turn to a quantita-
tive study of orientational ordering in the next section.

III. ORIENTATIONAL ORDERING
A. Order parameter

For a system of N hard rods in 2D, the nematic order
parameter g is given by

1 N
0= 5 (D cos(26)) ®

=1

where 6; is the angle made by the i** rod with the ne-
matic director, which itself has an orientation ¢ with re-
spect to a fixed reference X-axis. Both ¢ and ¢ can be
found by studying the tensor order parameter defined as

N
Qus = (O Rualiyusli) ~3usl) (9

=1

where u, (i) is the o component of u(i), the vector spec-
ifying the orientation of the i*" rod. The eigenvalues of
Q. are ¢, and the corresponding eigenvectors pick out
directions along and perpendicular to the director orien-
tation ¢. Insofar as there is no long range order in the 2D
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FIG. 1: (a) The variation of p (number of rods per unit area)
with k shows a change of behaviour for x in the range 20-25.
This is more prominently depicted in the inset which shows
the variation of p/(x —1). (b) Variation of p with z/A2. The
inset shows the initial portion of the curve.

needle system, ¢ vanishes in the thermodynamic limit. In
simulations on finite systems, though, ¢ may appear to
be non-zero (Fig. 2(d)]), over short times. Tracking the
onset of such an apparent value is not a reliable way to
locate the transition point.

B. Orientational cumulant of ¢

A Dbetter indication of the transition point, and also the
nature of the ordered phase, is provided by monitoring
the probability distribution functions P,(q) of g, where ¢
is the block-averaged value of the local order parameter
with the system divided into blocks of finite size L [22].
A measure of the non-Gaussian character of Pr(q) is pro-
vided by the reduced 4" order Binder cumulant of ¢

vy =1 A0 (10)
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FIG. 2: Snapshots of hard rod configurations at different val-
ues of k. The substrate size is 15x15. Observe the formation
of defects in the configurations (a), (b) and (c).

where L is the linear size of the sub-system (block). Uy,
provides a useful diagnostic tool to monitor the ordering
induced by varying « [24].

For L <« &, Uy, is expected to stay close to a fixed point
value U*. Thus, the occurrence of a critical point with
& = oo can be identified by plotting Uy against s for
various values of L, and looking for common intersection
point.

We analysed the Monte Carlo data of our model by
monitoring Uy, (Eq. ). The analysis was performed
as follows : We simulated a single large system of size
K x K (K = 25) and divided it into subsystems of size
L x L, thereby having total M2 number of subsystems
with M = K/L [23]. Then, M was incremented in inte-
ger steps starting from 1 and Uy, was estimated for those
subsystem sizes L where a good analysis is possible. Con-
sequently, we did not consider very small or very large
values of M. Also, the curve for M = 12 lies anomalously
low and was not included. The number of subsystems
(M) we use for estimating the cumulant range from 8 to
20. Fig. B shows the variation of Uy, as a function of s
for various values of L.
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FIG. 3: Orientational cumulants Ur as a function of
deposition-evaporation ratio x for various subsystem sizes L
= K/M. Note the collapse of the curves beyond k. ~ 25,
pointing to the occurrence of a power law phase.

Below k. ~ 25.8, the curves are separate and distinct,
but they collapse at k., indicating the onset of ordering
(Fig. Bl). Moreover, the curves seem to stay collapsed for
K > K. suggesting that £ remains infinite in this phase,
i.e. this is a phase with power law decay of correlations.
Corroboration of this is provided by directly monitoring
the correlation functions as described below.

C. Orientational correlation functions

Let us define a general orientational correlation func-
tion ge(r,t) = (cos[l(6(r,t) —6(0,0))]) where £ is an even
integer. We studied static and dynamical properties by
investigating g¢(r,0) and g¢¢(0,t). We calculated spatial
correlations by forming circular bins around each rod in
turn, computing g¢(r,0) for each bin, repeating this pro-



cess for all rods in the configuration and averaging over
all rods (see Fig. H). The dynamical correlation func-
tion, g¢(0,t) was calculated by coarse-graining. The sys-
tem was divided into a number of small cells (1x1) and
an average value of orientation was assigned to each cell
by averaging over the orientations of those needles whose
centres of mass lie in the cell. The value of g¢(0,t) was
computed using this average value over each time frame,
and averaging over all the cells (see Fig. E). The initial
drops of the curves in Figs. and are sensitive
to the size of the cell used, while the power laws seen at
the larger times do not depend on the cell size.

In the nematic-like phase, i.e. for k beyond ke,
the correlations decay algebraically g;(r,0) ~ r~™ and
ge(0,t) ~ t=P¢. There are pronounced finite size effects
which lead to a flattening of the curves for r ~ L/2,
limiting the range over which the power law behaviour
extends. We found that the values of the exponents 7
and (B¢ vary continuously with s as shown in Table I.
The estimations were done over 10 independent sets of
configurations, each averaged over 1000 configurations.
For x ~ k., we observed that 1, ~ 0.23 £ 0.03 close to
the predicted Kosterlitz-Thouless value 0.25. Our results
for the static case, agree with those reported by Frenkel
and Eppenga [§] for the case of a fixed number of hard
rods on 2D plane. We confirm that at the critical point
K = K., the mean density is ~ 7 [§].

For k > k., it was observed that exponents ob-
tained from static correlations g2(r) and g4(r) are related
through 7o ~ n4/4. It was also found that the exponents
derived from the temporal correlations go(t) and g4(¢)
are related in a similar way, i.e. (G2 ~ (4/4. Further,
the ratios ny/B¢ ~ 2.0 for £ = 2 and 4, implying that the
dynamical exponent zgyy is 2. These observations can be
understood on the basis of the simple model discussed
below.

In order to model the dynamics we note that the
stochastic evaporation and deposition events change the
local value of the coarse-grained angle field 8 in a noisy,
diffusive way. In the discussion below, we take the an-
gle to be an unconstrained variable running from -oco to
+oo with (6 + n7) denoting the same needle orientation
for integer n. We consider a simple phenomenological
equation

00

ov _ 2
5 = KV +¢ (11)

where £ denotes white noise which satisfies

(E(r,)e(x’, ') = Bo(r —r')o(t —t') (12)

where B is a constant. This is of the same form as
the Edwards-Wilkinson equation [25], which describes
the evolution of a fluctuating interface. In our context,
Eq. () follows from the symmetric form of the Frank free

energy F = 1 K [(V6)2df on using the phenomenologi-
cal Langevin equation % = _‘5F + £. A more complete

description would involve coupled equations for the non-
conserved density and orientational fields. From Eq. ()

and (2 it follows that

Ph e xior
O+ t+t)0(r, 1)) 647T5K/
(13)
Setting ¢ = 0 we find that

0(r,t))*) =
which, using the Gaussian property of €, further implies
(cos{(O(r +1',t) — O(r,t))}) =r " (15)

where 1y = (?B/32r*K. The measured values of 7, can
be used to find K /B, whose value is included in Table I.

Similarly, setting ' = 0 in Eq.([[3) we find the auto-
correlation function

(0(r +1',t) — xorln(r)  (14)

B
32m0 K

O(r,t))}) ~ =B (16)

where 3; = (?B/647*K. Thus, for all K > k. the ratio
of 14 to 12 (and B4 to B2) is expected to be 4; as we have
seen above, our numerical results confirm this. Also, we
find the dynamical exponent zqy, = 1¢/8¢ is ~ 2.0 .

(cos{(O(r,t +1') —

IV. EFFECT OF INHOMOGENEOUS &

In this section, we explore the effects of having a spa-
tial variation of the deposition-evaporation rate ratio .
In a physical system, such a variation could arise from
the variation of the chemical potential or substrate tem-
perature from one spot to another as their local values
could influence the local detachment rate, as seen from
Eq. [@. As expected, such changes in s induce a spatial
variation of the density; more interestingly, they have a
strong effect on the orientational order as well. We ex-
plore these effects by considering several types of spatial
variations of .

In parallel to the discussion in section II, let T'q(z)
and T'.(z) denote the deposition and evaporation rates at
point z in the plane, and let x(x) = Ew) Let C’ be the
configuration reached from Conﬁguratlon C by removing
the rod at x,, and let P(C’) and P(C) be the weights
of the respective configurations in steady state. We can
check that the condition of detailed balance is valid when
P(C) has the product form P(C) = II;z(x;) where z(x;)
= A?p(x;)k(x;) is the local fugacity at the location of the

it" rod. If C is obtained from C by evaporating the m*"
rod, then evidently P(C) = P(C’) x z(xy,). Recalling
that W(C" — C) = Ty(zy,) and W(C — C') = Te(m),
we see that the condition of detailed balance is valid.

Thus the system reaches an equilibrium steady state
which, however, is inhomogeneous in density, due to the
non-uniform position dependence of k. The nature of
orientational order depends strongly on the the way in
which x is specified to vary over the plane. Below we
consider several types of variations

(i) A single interface separating low and high & regions,
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FIG. 4: Log-log plots of (a) g2(r,0) = {(cos[2(0(r,t) — 6(0,t))]) and (b) g2(0,t) = (cos[2(8(r,t) — 6(r,0))]) showing the static
and temporal behaviour respectively of g2(r,t). Data is shown for systems of sizes 15x15 and 25x25, and different values of .
The distance r is in units of rod length and time ¢ is in Monte Carlo time steps.
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FIG. 5: Log-log plots of (a) ga(r,0) = {(cos[4(0(r,t) — 6(0,t))]) and (b) g4(0,t) = (cos[4(6(r,t) — 6(r,0))]) showing the static
and temporal behaviour respectively of g4(r,t), for the same system sizes and values of « as in Fig. El

k(z) = k1, for x <%7
k() = ke, for z >LZ.

(ii) A uniform gradient in k across the substrate,
klz) =kt (1 4+ a F)
(iii) Random variation of x in the X-direction only,
k() = K1 + dk(x)

where dk(z) < K1 is a random function of x.

(iv) A random binary assignment of x on a grid on the
2D substrate

In the first three cases, periodic boundary conditions
were applied in Y-direction and open boundary condi-
tions along X. In the last case, open boundaries were
used in both directions. In all the cases considered, the

ranges of k values were chosen to be above k., the critical
value in the uniform case. Our findings are as follows :

A. K1 — ko interface

Here, a uniform value k1 operates upto half-way across
the 2D plane along the X-direction, while k = k2 (> k1)
in the remaining half. In the vicinity of the interfacial
region, the rods are observed to orient in the direction
the of k gradient i.e. perpendicular to the interface (see
Fig. .

This can be understood on entropic grounds. That
arrangement of rods is favoured which maximizes the en-
tropy. By symmetry, the preferred average orientation
of rods should be either (a) parallel or (b) perpendicu-
lar to the interface. Consider those rods in the high-x



TABLE I: k dependence of exponents 1, and (3, for £ = 2 and 4 . The estimated error is indicated in the brackets.

K p 72 4 B2 Ba K/B
2.0 73 0.23 (0.03) 0.87 (0.06) 0.11 (0.04) 0.31 (0.06) 53 <107
32.3 9.4 0.098 (0.006) 0.41 (0.02) 0.037 (0.007) 0.16 (0.04) 12.8 x1073
39.0 11.4 0.059 (0.003) 0.25 (0.01) 0.022 (0.003) 0.09 (0.01) 21.4 %103

half, whose centres lie very close to the interface (within
half a rod length) so that part of such rods can reach
into the low density side. Small variations in the angle
of each rod would contribute to the entropy, but these
are limited by the presence of other rods. A horizontal
average alignment allows the rods to sample a less dense
environment, and thus be subject to fewer constraints,
on one side. Thus, option (b) would be preferred over
(a). The effect of interface-induced horizontal alignment
is felt for some distance away from the interface on both
sides. This is evident in Fig which shows a steady
state configuration in a system of size 25 x 15 (in units
of rod length), with k; = 30 and k2 = 50. However, for
a large enough size, the system reverts to a power-law
phase in the region far from the interface as observed in
the uniform x case. The correlation function decays as a
power law in the bulk, away from the interface, as shown

in Fig[6(b]

We also considered the case with two values of x, using
periodic boundary conditions in both directions which
leads to two interfaces (Fig. [). The figure shows a 80
x 15-sized system with periodically linked left and right
quarters with k; = 30, while the middle half has k5 = 50.
Evidently, this system too shows interface-induced hori-
zontal alignment. This geometry admits of an interesting
limit where the entropy driven alignment is particularly
clear. On shrinking the width of the central region to
zero, at the same time taking the limit k1 — 0, we obtain
a 1D model as a limiting case. In this model, deposition
and evaporation moves are allowed with needle centres
constrained to lie on the line. Needles are found to ori-
ent preferentially perpendicular to the line (see the inset
in Fig. B). The reason is evident. If the mean orientation
of the director is perpendicular to the substrate, needles
have the largest leeway to make angular excursions about
the mean - i.e. the rotational entropy is then the largest.
The variation with x of the density and order parameter
q = (cos2¢) where ¢ is the angle made with the direction
perpendicular to the line, is shown in Fig. B

A similar effect should also lead to rods getting aligned
horizontally if they are close to an open boundary in the
2D system. That this is so can be seen in Fig. @ which
shows a system with uniform x = 27 and open boundary
conditions along the X-direction.

2, |

0.6

FIG. 6: (a) Snapshot of a typical hard rod configuration with
a single k1 — k2 interface. The system size is 25 X 15 and k1 =
30 (left half) and k2 = 50 (right half). Boundary conditions :
Open (along X) , Periodic (along Y). Notice the difference in
density in the two halves. (b)This plot shows the decay of the
orientational correlation function g2 (y) = (cos[2(6(y)—0(0))])
calculated for a pair of points in the same vertical strip of unit
width. Curves from bottom to top correspond to different
strips in two halves in the configuration (a). The inset shows
g2(r) = (cos[2(0(r) — 0(0))]) measured radially for a box of
size 6 x 6 which is positioned at the centre of each of the left
and right halves of the same configuration. The distances r
and y are in units of rod length.



FIG. 7. A dual-interface configuration in an 80 x 15-sized
system with periodic boundary conditions in both directions.
The middle half of size 40 x 15 and with k2 = 50 separates
two quarters, linked at the boundary, each of size 20 x 15 and
having k1 = 30.
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FIG. 8: Variation of the density(p) and order parameter(q)
with k for the 1D model which a limiting case of the 2-D
k1 — k2 model for Fig. [ As shown schematically in the
inset, the preferred orientation of needles is perpendicular to
the line.

B. Uniform k gradient

This case is related to the discussion above, as the lin-
ear increase in kK may be viewed as a continuous succes-
sion of interfaces from one end to the other. Since each
interface induces an alignment of rods across it, this re-
sults in overall alignment of the rods in the system (see
Fig. ). Note that the alignment is not an outcome of
spontaneous breaking of orientational symmetry, as the
gradient in x singles out a direction in space. We checked
that the horizontal alignment is not tied to the aspect ra-
tio of the container by simulating a system size 10 x 40,
and observing overall horizontal alignment of rods in the
steady state.

Figure [ shows a steady state configuration in a sys-
tem of size 25 x 15, with s varying linearly from a
value k;, = 32 at the left end to a value kg = 50 at
the right end. In our simulations, the system was equi-
librated for 10” MCS and 10* post-equilibration config-
urations were used to calculate averages. We studied

FIG. 9: A typical configuration of size 25 x 15 with uniform
k = 27 and open boundary conditions along the X-direction.
Free boundaries induce alignment which propagates some dis-
tance into the bulk.

FIG. 10: A typical configuration for a 25 x 15-sized system
with a uniform s gradient, with K, = 32 and kg = 50 at the
two ends respectively. The horizontal alignment induced by
the gradient is evident.

the spatial and dynamical behaviour of the orientational
correlation function ga(r,t) = (cos[2(0(r,t) — 6(0,0))]).
Since the system is inhomogeneous along the X-direction,
the substrate was divided into vertical strips, each hav-
ing width of a rod length, and each strip was studied
separately. The Y-density of needles inside each strip
was uniform though the density varies from strip to
strip. We monitored the correlation function ga2(y) =
(cos[2(0(y + yo) — O(yo))]) (see Fig. [[), and found that
92(y) decays exponentially to a non-vanishing constant
value qo which differs from strip to strip. For the sys-
tem under study, g3 varies in the range 0.68-0.77 over
the strips.

The dynamical correlation function, ie. go(t) =
(cos[2(0(t) — 6(0))]) was calculated by coarse-graining.
The system was divided into number of small cells (2x2)
and an average value of orientation was assigned to each
cell by averaging over needles in it. The plot of go(t) is
shown in Fig. for cells at different values of X. Each curve
shows an exponential approach to a non-zero constant
value. The behaviour of both the spatial and dynamical
orientational parts of the correlation functions indicates
a phase with overall orientational alignment.



FIG. 11: Correlation function in a 25 x 15-sized system with
a uniform k gradient. Shown is the log-normal plot g2(y) =
(cos[2(8(y)—0(0))]) —qg for pairs of points in the same vertical
strip of unit width. Curves from bottom to top correspond
to different vertical strips in the order of increasing x. It is
evident from the plots that g2(y) exhibits exponential decay.
The distance y is in units of rod length.
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FIG. 12: Dynamical correlation function in the system of Fig.
[ and [ Log-normal plots of g2(t) = (cos[2(8(t) —0(0))]) —
g2 as shown, with curves from bottom to top correspond to
different cells with increasing k (refer to the main text for
details). The time ¢ is in Monte Carlo time steps.

C. Random variation of x(z)

We have seen that a uniform gradient in & results in
an orientationally ordered state. However, the argument
for ordering does not depend on the gradient being con-
stant in magnitude or sign. Thus, if x varies randomly
(with k > k) along the X-direction but is uniform along
Y, the resulting state once again should exhibit horizon-
tal alignment with needles aligned along the X-direction.
The resulting state can once again be viewed as contin-
uous succession of interfaces and should display overall
alignment.

Figure [[3 shows a steady state configuration obtained
with a quenched random variation of k(z). The system
was simulated by varying x randomly around a value of
k such that k £ dk(z) > k., where dx(x) denotes ran-
dom variations along X-direction. We used s ~ 32 and
dk = 2.0. The correlation functions g2(y) and g2(t) be-
have similarly to the uniform gradient case (see Fig. [[4]
andld ). Thus, this case also yields a phase with overall
orientational alignment.

FIG. 13: A typical configuration for a 25 x 15-sized system
with a k gradient achieved by varying the value of x randomly
around 32 in the X-direction only. The horizontal alignment
induced by the gradient is evident.

0.1

2,(y)
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FIG. 14: Correlation function in a 25 X 15-sized system with
a random k gradient in the X-direction only. Shown is the
log-normal plot ga(y) = (cos[2(8(y) — 0(0))]) — ¢ for pairs of
points in the same vertical strip of unit width. Curves from
bottom to top correspond to different vertical strips in the
order of increasing x. It is evident from the plots that ga(y)
exhibits exponential decay. The distance y is in units of rod
length.

D. 2D random binary distribution of x values

In this case, the fugacity is set inhomogeneously in
a quenched disordered fashion, so that the tendency to
align locally along gradients results in competing pat-
terns of order, i.e the system is frustrated. The resulting
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FIG. 15: Dynamical correlation function in the system of Fig.
and[[. Log-normal plots of ga(t) = (cos[2(8(t) —0(0))]) —
g2 as shown, with curves from bottom to top correspond to
different cells with increasing x. The time ¢ is in Monte Carlo
time steps.

state has glassy features and contains domains of differ-
ent orientations (see Fig. [[A) [26].

In our simulations, we divided the substrate of size 25
x 25 into a grid of unit length squares. Each square
was randomly assigned a x value either 27 or 50 (both
greater than .). The random  gradient across square
edges generates local disorder, which can disrupt the ori-
entational order and result in destruction of orientational
alignment on the scale of the system size. The effect of
quenched random disorder due to orientational random-
ness of cross-links in a system of nematic elastomers has
been studied earlier m] and the model was reported to
have spin-glass like behaviour. In our model, the disorder
emerges from the randomness in the spatial distribution
of k values. We find that the spatial correlation ga(r)
decays exponentially to zero (Fig. [[) whereas the dy-
namical part go(t) seems to decay in an algebraic manner
to a non-zero value (Fig[Ig).

The behavior is suggestive of a glassy system which
is disordered in space but relaxes slowly in time. More-
over, it was also found that with same quenched disorder
arrangement, different initial conditions lead to different
states. Typical configurations in each of these states are
shown in Fig. [ which is a glass-like feature.

V. CONTINUUM DESCRIPTION

As discussed above, our simulations show that a spa-
tially inhomogeneous deposition-evaporation ratio x can
induce nematic order and other interesting orientational
patterns in the equilibrium state of a system of hard nee-
dles. It is interesting to ask whether these effects can be
captured within a phenomenological coarse-grained de-
scription based on including symmetry-allowed terms in
the free energy. In the context of liquid crystals, such an
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(b)

FIG. 16: Snapshots of hard rod configurations for random
binary distribution of x values 27 and 50 on the substrate of
size 25 x 25. Representative configurations characterizing two
different states ((a) and (b)) which are reached from different
initial conditions, for the same x distribution.

approach has proved successful in studying large-distance
phenomena, including the effects of walls and other inho-
mogeneities ﬂﬂ] Below we sketch such a description for
our system of interest m] Besides showing that gradi-
ents in the deposition-evaporation rates lead to orienta-
tional ordering, the treatment suggests the occurrence of
local splay.

Let us define a nematic director field 7i(r) to describe
the local coarse-grained value of the orientation of nee-
dles (evidently, 7i(r) and —#(r) describe the same config-
uration). In the absence of externally imposed inhomo-
geneities, spatial variations of 7(r) lead to a free energy
described by the Frank form [J]

K K.
Fr = /d2r[71(v -n)? + 73(& x (V xn))?]  (17)
The two terms describe, respectively, contributions of
splay and bend to the free energy; there is no contri-



0.7

g,(1)

0.4

10

FIG. 17: Evidence for exponential decay of spatial correla-
tions in a system with random binary distribution of k. The
figure shows log-normal plots of g2(r) = (cos[2(8(r) — 6(0))]).
The parameters are the same as in Fig. [[A and the curves
correspond to the different steady states evolved from two
different initial conditions. The distance r is in units of rod
length.

FIG. 18: Evidence for a power law decay of temporal correla-
tions in a system with random binary distribution of x. The
figure shows log-log plots of ga(t) = (cos[2(6(t) — 0(0))]) — q3.
The parameters are the same as in Fig. [[6] and the curves
are obtained in the different steady states reached from two
different initial conditions. The time ¢ is in Monte Carlo time
steps.

bution from twist in 2-d.

Inhomogeneities in deposition-evaporation rates lead
to spatial gradients V&, which imply new terms in the
free energy. These terms consist of scalars involving Vk
and 7, respecting invariance under n < —n. Two such
scalars are obtained by replacing the gradient operator
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by V& in the terms in Eq.([I) to get

J J:
P = /d%«?l[(w 7)) + /d%g[(ﬁ « (Vi x 7))?]
(18)
In addition to these terms, which are quadratic in
Vi, one can also construct scalars which involve Vk lin-
early [29]

Fr = /d%%w-[ﬁ(v-ﬁ)] +/d2r%Vﬁ-[(ﬁ-V)ﬁ].
(19)
Symmetry considerations alone do not suffice to deter-
mine the values of the coefficients K1, K3, J1, J3, L1 and
Ls. Their density dependences can be found on noting
that a change in x induces a change in density, thereby
influencing the elastic energy. To incorporate this, we re-
place 7 in Eq. (@) by (p(r)7/po) where p(r) and pg are
the local and average densities respectively. Appendix A
contains the resulting form of the free energy F), and the
values of the coupling constants.
Let us turn to the consequences of the new terms. With
a uniform spatial gradient, Vi = aZ (case (ii) above), F;
induces overall alignment of needles. To see this, consider
Fyx+F;. Evidently, Fi is minimized by any arrangement
in which 7 is uniform in space while F; is orientation
dependent. Writing 1 = Zcos¢ + gsing, we find

Fy = &*(Jicos*¢ + Jzsin’¢) (20)

Fx 4+ Fj is minimized by having an aligned state, either
with ¢ = 0 (if J3 > J1) or with ¢ = § (if J3 < J1). Our
numerical results, supported by the entropic considera-
tions given above, show alignment in the direction of the
gradient, implying AJ = J3 — Jp is positive.

Now consider the effect of F,. Setting Vx = a in Eq.

@), we find

Fr, =—a(L1+ L3) sing coso %
2 2 9¢
+ a(Licos”d — Lzsin“g) o (21)

(Frx + Fr) can be minimized on noting that each of the
Ly and L3 terms is an eigenfunction of the Frank elastic
matrix. The result is

0p —Li o Ly .,

e cos“ ¢ + e sin“¢ (22)
d¢p L1  Ls .
i (_Kl _KB) cos¢p  sing (23)

These terms describe a spiralling tendency of the director
in space.

The full problem involves minimizing Fy + Fx + FL.
If F; is dominant, the director is primarily aligned along



the gradient implying ¢ is small. Egs.([22) and 23] then
reduce to 0¢/dy ~ — L1 /K, which describes a spiralling
director; further, F; restricts angular excursions to be

1 . . .
at most ¢g X755 Thus the predicted state is one with

overall alignment along the gradient, but with local splay
structures, each with a small opening angle ~ 2¢y. This
picture is borne out by our simulations.

For case (iii) in which x(x) varies randomly, we see that
Fy; = ?(J10032¢ + J3sin?¢) where o2 is the spatial av-
erage of the mean squared gradient. As for case (ii), the
free energy is minimized by having a state with align-
ment along the gradient, as observed in our simulations,
provided J3 > Jj.

In case (iv), the gradients that appear in Eq. ([[J) are
random in direction leading to frustration in the arrange-
ment of needles. Equations (), (I¥) and [@) provide a
starting point for a theoretical description of the glassy
state that results.

VI. CONCLUSION

In summary, we have studied orientational ordering in
a 2D grand canonical system of hard rods using deposi-
tion and evaporation moves. The control parameter is
the ratio x of deposition and evaporation rates, which
controls the density. The system with uniform « displays
a transition from an isotropic phase (for k¥ < k¢) to a
phase characterized by algebraically decaying static and
dynamical orientational correlations for k > k.. Further,
the values of the critical exponents and the behaviour of
the orientational cumulant are consistent with Kosterlitz-
Thouless theory. The numerical results for the dynamical
correlation functions are described by a phenomenolog-
ical Edwards-Wilkinson equation for the non-conserved
orientational field.

Our principal results pertain to the new behavior in-
duced by having a position-dependent x, and hence a
space-varying density of rods. An anisotropic variation
of k (say along the X-direction only) results in needles
aligning along the x gradient. This was understood by
first considering the effect of an interface separating re-
gions with two values of k. Entropic considerations lead
the needles to align normal to the interface, i.e. along the
gradient. From another point of view, k-gradients lead to
new terms in the Frank-like free energy and these in turn
imply orientational ordering. Finally in a system with
quenched disorder corresponding to spatially random x,
we found indications of orientationally frozen states with
glass-like characteristics. It would be useful to have a
better characterization and understanding of this glassy
state.

The mechanism behind gradient-induced orientational
ordering is simple: spatial variations of x induce varia-
tions in needle density; and an average alignment of nee-
dles along the gradient is preferred as this leads to an en-
hanced entropy of rotational excursions around the mean.
In effect, the x-gradient thus behaves like an external
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field acting to produce nematic order, ultimately due to
the strong coupling between spatial and orientational de-
grees of freedom in the needle system. Gradient-induced
ordering effects should be present in three-dimensional
systems as well. In 3D, the Onsager mechanism for ne-
matic long range order would predict ordering for values
of a uniform « exceeding a critical value k.. The addition
of a uniform k-gradient would be expected to lead to a
nonzero value of nematic ordering for all values of x, and
to enhance its value for £ > k.. It would be interesting
to test this prediction, and have a quantitative measure
of gradient-induced ordering in 3D.
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APPENDIX A

To incorporate the effect of spatial variation of the den-
sity, we write (p(r)n/po) in place of the director 7 in the
Frank free energy Fi of Eq. (). The resulting expres-
sion F), for the free energy can be written as

K
F,= | &*r[—(V -
/r[2p<Vp

: ﬁ)ﬂ%@ﬁxmpﬁ)ﬁ (24)

The expansion of the integrand involves ten terms :
[y p2 sin2e + (£ p?) pcos?d] (99/0x)?

208 o

(59 52 costo 1 (3 12) fRsindd] (06/00)°

[t% cos®p + (g4 p?) sin®¢] (Op/0x)?

[t% sin® + (5,5 p?) cos®¢] (9p/0y)*

[ 5ot + (355 p?) | 2p sing cose (99/dx) (9p/0x)

[t% - (355 P°) ] 2 sing cos¢ (9¢/dy) (0p/0y)

[t% - (555 1) ] 2 sing cos¢ (9p/0x) (9p/0y)

(5ot + (35 p?) | 207 sing cos (09/0z) (9/Dy)

[f’l’%l sin®¢ - (354 p?) cos*¢ ] 2p (99/0x) (9p/dy)
K3

(25 cos?6 + (£ p?) sinp | 2p (9p/0x) (06/0y)

SN



In case (ii) where k varies linearly with z, the den-
sity gradient is non-zero only along the X-direction, and
vanishes along Y, so the terms involving dp/dy do not
contribute. We can then read off the density dependence
induced in the elastic constants in terms of the original
Frank’s constants as

K{(p) = 43 p* and Kj(p) = T3¢ p*

Now, comparing the third term of the expression with
Eq. (@) and writing dp/0z = a((p) where ((p) = dp/ 0k,

we have
Ky

R

_ K

Ji(p) (q72) Js(p)—pgp(é(p))2 (25)
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Similarly, grouping the fifth and the tenth terms together
and comparing with Eq. ([[d), we obtain

L1<p>—f—§2p<<p> L) = (o 2020C0). (26)

[1] S. Fraden et al, Phys. Rev. Lett., 63, 2068 (1989).

[2] P. G. de Gennes and J. Prost, The Physics of Liquid
Crystals, 2" Ed. (Clarendon, Oxford, 1993).

[3] M. F. Islam et al, Phys. Rev. Lett., 92, 088303 (2004).

[4] J. A. Cuesta and D. Frenkel, Phys. Rev. A, 42, 2126
(1990).

[5] A. Stroobants, H. N. W. Lekkerkerker and D. Frenkel,
Phys. Rev. A, 36, 2929 (1987).

[6] M. A. Bates and D. Frenkel, J. Chem. Phys. 112, 10034
(2000).

[7] M. C. Lagomarsino, M. Dogterom and M. Dijkstra, J.
Chem. Phys. 119, 3535 (2003).

[8] D. Frenkel and R. Eppenga, Phys. Rev. A, 31, 1776
(1985).

[9] J. W. Evans, Rev. Mod. Phys. 65, 1281 (1993).

[10] E. Frey and A. Vilfan, Chem. Phys. 284, 287 (2002).

[11] V. Narayan, N. Menon and S. Ramaswamy (unpub-
lished).

[12] R. B. Stinchcombe, M. D. Grynberg and M. Barma,
Phys. Rev. E 47, 4018 (1993).

[13] P. L. Krapivsky and E. Ben-Naim, J. Chem. Phys. 100,
6778 (1994).

[14] A. J. Kolan, E. R. Nowak and A. V. Tkachenko, Phys.
Rev. E 59, 3094 (1999).

[15] P. R. Van Tassel et al, J. Chem. Phys. 112, 1483 (2000).

[16] J. Talbot, G. Tarjus and P. Viot, Phys. Rev. E 61 5429
(2000).

[17] Lj. Budinski-Petkovic, U. Kozmidis-Lubiric, Physica A
301, 174 (2001).

[18] L. Onsager, Ann. N. Y. Acad. Sci., 51, 627 (1949).

[19] J. P. Straley, Physical Review A, 4, 675 (1971).

[20] D. R. Nelson in Phase Transitions and Critical Phenom-

ena edited by C. Domb and J. L. Lebowitz (Academic
London, 1983) vol. 7.

[21] D. P. Landau and K. Binder in A Guide to Monte Carlo
Simulations in Statistical Physics (Cambridge University
Press, 2000), section 6.1.3.

[22] K. Binder in Monte Carlo Methods in Statistical Physics:
An Introduction, K. Binder, D.W. Heermann (Springer,
Berlin, 1988).

[23] H. Weber, D. Marx and K. Binder, Phys. Rev. B 51,
14636 (1995).

[24] For instance, for Ising-like systems, for 7' > T. and
L > ¢, Pr(s) approaches a Gaussian distribution, while
for T'< T. and L > &, Pr(s) approaches two Gaussians
centered at =My where £ denotes the correlation length
and My is the spontaneous magnetization of infinite sys-
tem. At criticality, Pr(s) approaches a scaled universal
form for large L [22, 24]. Note that 's’ denotes the order
parameter corresponding to Ising-like systems.

[25] S. F. Edwards and D. R. Wilkinson, Proc. Roy. Soc.
Lond. A 381, 17 (1982).

[26] K. Binder in Spin Glasses and Random Fields edited by
A. P. Young (World Scientific, 1997).

[27] Y. -K. Yu, P. L. Taylor and E. M. Terentjev, Phys. Rev.
Lett., 81, 128 (1998).

[28] We are grateful to Yashodhan Hatwalne, Gautam Menon
and Sriram Ramaswamy for very useful inputs on this
section.

[29] The form of these terms is the same as those describing
the coupling of a flexoelectric nematic to the electric field;
see Section 3.3.2 of Ref. [2]. In our case, the external field
is Vk.



