572 research outputs found

    Fault Kinematic Modeling Along a Widely Deformed Plate Boundary in Southern Italy

    Get PDF
    Convergent plate boundaries are often characterized by widely deformed zones, where coexisting tectonic processes and variable fault kinematics can occur. Here, we quantify this variability along the Africa-Eurasia deformed boundary in southern Italy, based on the evaluation of geodetic strain rate by recent space geodesy observations and plate motions, which are integrated by main geometric properties of detected faults in the area. We propose a compilation of 160 known faults. We use numerical methods to predict fault kinematics and net slip rate, due to the geodetic deformation field with the inclusion of fault strain accommodation. The obtained tectonic setting is compared with the observable, showing a fault rake agreement of the 73%, which allows us to consider this approach potentially favorable to improve the knowledge of fault kinematics along diffuse plate boundaries, when fault properties are not directly available

    Carotenoid Raman signatures are better preserved in dried cells of the desert cyanobacterium Chroococcidiopsis than in hydrated counterparts after high-dose gamma irradiation

    Get PDF
    Carotenoids are promising targets in our quest to search for life on Mars due to their biogenic origin and easy detection by Raman spectroscopy, especially with a 532 nm excitation thanks to resonance effects. Ionizing radiations reaching the surface and subsurface of Mars are however detrimental for the long-term preservation of biomolecules. We show here that desiccation can protect carotenoid Raman signatures in the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 even after high-dose gamma irradiation. Indeed, while the height of the carotenoids Raman peaks was considerably reduced in hydrated cells exposed to gamma irradiation, it remained stable in dried cells irradiated with the highest tested dose of 113 kGy of gamma rays, losing only 15-20% of its non-irradiated intensity. Interestingly, even though the carotenoid Raman signal of hydrated cells lost 90% of its non-irradiated intensity, it was still detectable after exposure to 113 kGy of gamma rays. These results add insights into the preservation potential and detectability limit of carotenoid-like molecules on Mars over a prolonged period of time and are crucial in supporting future missions carrying Raman spectrometers to Mars’ surface
    corecore