560 research outputs found

    Influence of damping on the excitation of the double giant resonance

    Get PDF
    We study the effect of the spreading widths on the excitation probabilities of the double giant dipole resonance. We solve the coupled-channels equations for the excitation of the giant dipole resonance and the double giant dipole resonance. Taking Pb+Pb collisions as example, we study the resulting effect on the excitation amplitudes, and cross sections as a function of the width of the states and of the bombarding energy.Comment: 8 pages, 3 figures, corrected typo

    Fermi Surface and Electron Correlation Effects of Ferromagnetic Iron

    Full text link
    The electronic band structure of bulk ferromagnetic iron is explored by angle-resolved photoemission for electron correlation effects. Fermi surface cross-sections as well as band maps are contrasted with density functional calculations. The Fermi vectors and band parameters obtained from photoemission and their prediction from band theory are analyzed in detail. Generally good agreement is found for the Fermi surface. A bandwidth reduction for shallow bands of ~ 30 % is observed. Additional strong quasiparticle renormalization effects are found near the Fermi level, leading to a considerable mass enhancement. The role of electronic correlation effects and the electronic coupling to magnetic excitations is discussed in view of the experimental results.Comment: 12 pages, 14 figures, 1 tabl

    First principles calculation of structural and magnetic properties for Fe monolayers and bilayers on W(110)

    Full text link
    Structure optimizations were performed for 1 and 2 monolayers (ML) of Fe on a 5 ML W(110) substrate employing the all-electron full-potential linearized augmented plane-wave (FP-LAPW) method. The magnetic moments were also obtained for the converged and optimized structures. We find significant contractions (\sim 10 %) for both the Fe-W and the neighboring Fe-Fe interlayer spacings compared to the corresponding bulk W-W and Fe-Fe interlayer spacings. Compared to the Fe bcc bulk moment of 2.2 μB\mu_B, the magnetic moment for the surface layer of Fe is enhanced (i) by 15% to 2.54 μB\mu_B for 1 ML Fe/5 ML W(110), and (ii) by 29% to 2.84 μB\mu_B for 2 ML Fe/5 ML W(110). The inner Fe layer for 2 ML Fe/5 ML W(110) has a bulk-like moment of 2.3 μB\mu_B. These results agree well with previous experimental data

    Efficient coding of natural scenes improves neural system identification

    Get PDF
    Neural system identification aims at learning the response function of neurons to arbitrary stimuli using experimentally recorded data, but typically does not leverage normative principles such as efficient coding of natural environments. Visual systems, however, have evolved to efficiently process input from the natural environment. Here, we present a normative network regularization for system identification models by incorporating, as a regularizer, the efficient coding hypothesis, which states that neural response properties of sensory representations are strongly shaped by the need to preserve most of the stimulus information with limited resources. Using this approach, we explored if a system identification model can be improved by sharing its convolutional filters with those of an autoencoder which aims to efficiently encode natural stimuli. To this end, we built a hybrid model to predict the responses of retinal neurons to noise stimuli. This approach did not only yield a higher performance than the “stand-alone” system identification model, it also produced more biologically-plausible filters. We found these results to be consistent for retinal responses to different stimuli and across model architectures. Moreover, our normatively regularized model performed particularly well in predicting responses of direction-of-motion sensitive retinal neurons. In summary, our results support the hypothesis that efficiently encoding environmental inputs can improve system identification models of early visual processing

    Elasticity and Viscosity of DNA Liquid Crystals

    Get PDF
    Concentrated solutions of blunt-ended DNA oligomer duplexes self-assemble in living polymers and order into lyotropic nematic liquid crystal phase. Using the optical torque provided by three distinct illumination geometries, we induce independent splay, twist, and bend deformations of the DNA nematic and measure the corresponding elastic coefficient

    Monte Carlo Simulation of Magnetization Reversal in Fe Sesquilayers on W(110)

    Full text link
    Iron sesquilayers grown at room temperature on W(110) exhibit a pronounced coercivity maximum near a coverage of 1.5 atomic monolayers. On lattices which faithfully reproduce the morphology of the real films, a kinetic Ising model is utilized to simulate the domain-wall motion. Simulations reveal that the dynamics is dominated by the second-layer islands, which act as pinning centers. The simulated dependencies of the coercivity on the film coverage, as well as on the temperature and the frequency of the applied field, are very similar to those measured in experiments. Unlike previous micromagnetic models, the presented approach provides insight into the dynamics of the domain-wall motion and clearly reveals the role of thermal fluctuations.Comment: Final version to appear in Phys. Rev. B. References to related works added. 7 pages, 5 figures, RevTex, mpeg simulations available at http://www.scri.fsu.edu/~rikvol
    corecore