608 research outputs found

    On the Bartnik extension problem for the static vacuum Einstein equations

    Full text link
    We develop a framework for understanding the existence of asymptotically flat solutions to the static vacuum Einstein equations with prescribed boundary data consisting of the induced metric and mean curvature on a 2-sphere. A partial existence result is obtained, giving a partial resolution of a conjecture of Bartnik on such static vacuum extensions. The existence and uniqueness of such extensions is closely related to Bartnik's definition of quasi-local mass.Comment: 33 pages, 1 figure. Minor revision of v2. Final version, to appear in Class. Quantum Gravit

    Static solutions from the point of view of comparison geometry

    Full text link
    We analyze (the harmonic map representation of) static solutions of the Einstein Equations in dimension three from the point of view of comparison geometry. We find simple monotonic quantities capturing sharply the influence of the Lapse function on the focussing of geodesics. This allows, in particular, a sharp estimation of the Laplacian of the distance function to a given (hyper)-surface. We apply the technique to asymptotically flat solutions with regular and connected horizons and, after a detailed analysis of the distance function to the horizon, we recover the Penrose inequality and the uniqueness of the Schwarzschild solution. The proof of this last result does not require proving conformal flatness at any intermediate step.Comment: 41 page

    Einstein equations in the null quasi-spherical gauge III: numerical algorithms

    Get PDF
    We describe numerical techniques used in the construction of our 4th order evolution for the full Einstein equations, and assess the accuracy of representative solutions. The code is based on a null gauge with a quasi-spherical radial coordinate, and simulates the interaction of a single black hole with gravitational radiation. Techniques used include spherical harmonic representations, convolution spline interpolation and filtering, and an RK4 "method of lines" evolution. For sample initial data of "intermediate" size (gravitational field with 19% of the black hole mass), the code is accurate to 1 part in 10^5, until null time z=55 when the coordinate condition breaks down.Comment: Latex, 38 pages, 29 figures (360Kb compressed

    Static Cosmological Solutions of the Einstein-Yang-Mills-Higgs Equations

    Full text link
    Numerical evidence is presented for the existence of a new family of static, globally regular `cosmological' solutions of the spherically symmetric Einstein-Yang-Mills-Higgs equations. These solutions are characterized by two natural numbers (m≥1m\geq 1, n≥0n\geq 0), the number of nodes of the Yang-Mills and Higgs field respectively. The corresponding spacetimes are static with spatially compact sections with 3-sphere topology.Comment: 7 pages, 5 figures, LaTe

    On a Localized Riemannian Penrose Inequality

    Full text link
    Consider a compact, orientable, three dimensional Riemannian manifold with boundary with nonnegative scalar curvature. Suppose its boundary is the disjoint union of two pieces: the horizon boundary and the outer boundary, where the horizon boundary consists of the unique closed minimal surfaces in the manifold and the outer boundary is metrically a round sphere. We obtain an inequality relating the area of the horizon boundary to the area and the total mean curvature of the outer boundary. Such a manifold may be thought as a region, surrounding the outermost apparent horizons of black holes, in a time-symmetric slice of a space-time in the context of general relativity. The inequality we establish has close ties with the Riemannian Penrose Inequality, proved by Huisken and Ilmanen, and by Bray.Comment: 16 page

    Trapped Surfaces in Vacuum Spacetimes

    Get PDF
    An earlier construction by the authors of sequences of globally regular, asymptotically flat initial data for the Einstein vacuum equations containing trapped surfaces for large values of the parameter is extended, from the time symmetric case considered previously, to the case of maximal slices. The resulting theorem shows rigorously that there exists a large class of initial configurations for non-time symmetric pure gravitational waves satisfying the assumptions of the Penrose singularity theorem and so must have a singularity to the future.Comment: 14 page

    Positive mass theorems for asymptotically AdS spacetimes with arbitrary cosmological constant

    Full text link
    We formulate and prove the Lorentzian version of the positive mass theorems with arbitrary negative cosmological constant for asymptotically AdS spacetimes. This work is the continuation of the second author's recent work on the positive mass theorem on asymptotically hyperbolic 3-manifolds.Comment: 17 pages, final version, to appear in International Journal of Mathematic

    Gluing Initial Data Sets for General Relativity

    Full text link
    We establish an optimal gluing construction for general relativistic initial data sets. The construction is optimal in two distinct ways. First, it applies to generic initial data sets and the required (generically satisfied) hypotheses are geometrically and physically natural. Secondly, the construction is completely local in the sense that the initial data is left unaltered on the complement of arbitrarily small neighborhoods of the points about which the gluing takes place. Using this construction we establish the existence of cosmological, maximal globally hyperbolic, vacuum space-times with no constant mean curvature spacelike Cauchy surfaces.Comment: Final published version - PRL, 4 page

    A Remark on Boundary Effects in Static Vacuum Initial Data sets

    Full text link
    Let (M, g) be an asymptotically flat static vacuum initial data set with non-empty compact boundary. We prove that (M, g) is isometric to a spacelike slice of a Schwarzschild spacetime under the mere assumption that the boundary of (M, g) has zero mean curvature, hence generalizing a classic result of Bunting and Masood-ul-Alam. In the case that the boundary has constant positive mean curvature and satisfies a stability condition, we derive an upper bound of the ADM mass of (M, g) in terms of the area and mean curvature of the boundary. Our discussion is motivated by Bartnik's quasi-local mass definition.Comment: 10 pages, to be published in Classical and Quantum Gravit
    • …
    corecore