219 research outputs found

    Global energy transition: From the main determinants to economic challenges

    Get PDF
    Dynamic global energy transition has been accelerating for the last decade. Interestingly, the energy transition is multidimensional and concerns both the dimensions of technique/ technology and the economic, social, institu-tional, and legal spheres

    Rapidity-dependent chemical potentials in a statistical approach

    Full text link
    We present a single-freeze-out model with thermal and geometric parameters dependent on the position within the fireball and use it to describe the rapidity and transverse-momentum spectra of pions, kaons, protons, and antiprotons measured at RHIC at 200 GeV} by BRAHMS. THERMINATOR is used to perform the necessary simulation, which includes all resonance decays. The result of the fit to the data is the expected growth of the baryon and strange chemical potentials with the spatial rapidity\alpha_\parallel. The value of the baryon chemical potential at \alpha_\parallel ~ 3 is about 200 MeV, i.e. lies in the range of the highest SPS energies. The chosen geometry of the fireball has a decreasing transverse size as the magnitude of \alpha_\parallel is increased, which also corresponds to decreasing transverse flow. The strange chemical potential obtained from the fit to the K+/K- ratio is such that the local strangeness density in the fireball is compatible with zero. The resulting rapidity spectra of net protons are described qualitatively within the statistical approach. As a result of our study, the knowledge of the ``topography'' of the fireball is acquired, allowing for other analyses and predictions.Comment: 6 pages, tals at SQM 200

    Modification of emission properties of ZnO layers due to plasmonic near-field coupling to Ag nanoislands

    Full text link
    A simple fabrication method of Ag nanoislands on ZnO films is presented. Continuous wave and time-resolved photoluminescence and transmission are employed to investigate modifications of visible and UV emissions of ZnO brought about by coupling to localized surface plasmons residing on Ag nanoislands. The size of the nanoislands, determining their absorption and scattering efficiencies, is found to be an important factor governing plasmonic modification of optical response of ZnO films. The presence of the Ag nanoislands of appropriate dimensions causes a strong (threefold) increase in emission intensity and up to 1.5 times faster recombination. The experimental results are successfully described by model calculations within the Mie theory.Comment: 14 pages, 5 figure

    Influence of the Barrier Shape on Resonant Activation

    Full text link
    The escape of a Brownian particle over a dichotomously fluctuating barrier is investigated for various shapes of the barrier. The problem of resonant activation is revisited with the attention on the effect of the barrier shape on optimal value of the mean escape time in the system. The characteristic features of resonant behavior are analyzed for barriers switching either between different heights, or "on" and "off" positions. PACS number(s): 05.10-a, 02.50.-r, 82.20.-wj.Comment: 7 pages, 8 figures, RevTex4. Manuscript has been revised and enhanced. Pictures have been made more clear and some of them have been cancelled. Additional references have been added. The paper has been submitted to Phys. Rev.

    Exact solution of the Schrodinger equation with the spin-boson Hamiltonian

    Full text link
    We address the problem of obtaining the exact reduced dynamics of the spin-half (qubit) immersed within the bosonic bath (enviroment). An exact solution of the Schrodinger equation with the paradigmatic spin-boson Hamiltonian is obtained. We believe that this result is a major step ahead and may ultimately contribute to the complete resolution of the problem in question. We also construct the constant of motion for the spin-boson system. In contrast to the standard techniques available within the framework of the open quantum systems theory, our analysis is based on the theory of block operator matrices.Comment: 9 pages, LaTeX, to appear in Journal of Physics A: Mathematical and Theoretica

    Levy stable noise induced transitions: stochastic resonance, resonant activation and dynamic hysteresis

    Full text link
    A standard approach to analysis of noise-induced effects in stochastic dynamics assumes a Gaussian character of the noise term describing interaction of the analyzed system with its complex surroundings. An additional assumption about the existence of timescale separation between the dynamics of the measured observable and the typical timescale of the noise allows external fluctuations to be modeled as temporally uncorrelated and therefore white. However, in many natural phenomena the assumptions concerning the abovementioned properties of "Gaussianity" and "whiteness" of the noise can be violated. In this context, in contrast to the spatiotemporal coupling characterizing general forms of non-Markovian or semi-Markovian L\'evy walks, so called L\'evy flights correspond to the class of Markov processes which still can be interpreted as white, but distributed according to a more general, infinitely divisible, stable and non-Gaussian law. L\'evy noise-driven non-equilibrium systems are known to manifest interesting physical properties and have been addressed in various scenarios of physical transport exhibiting a superdiffusive behavior. Here we present a brief overview of our recent investigations aimed to understand features of stochastic dynamics under the influence of L\'evy white noise perturbations. We find that the archetypal phenomena of noise-induced ordering are robust and can be detected also in systems driven by non-Gaussian, heavy-tailed fluctuations with infinite variance.Comment: 7 pages, 8 figure

    Safety and feasibility of Lin- cells administration to ALS patients : a novel view on humoral factors and miRNA profiles

    Get PDF
    Therapeutic options for amyotrophic lateral sclerosis (ALS) are still limited. Great hopes, however, are placed in growth factors that show neuroprotective abilities (e.g., nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF)) and in the immune modulating features, in particular, the anti-inflammatory effects. In our study we aimed to investigate whether a bone marrow-derived lineage-negative (Lin-) cells population, after autologous application into cerebrospinal fluid (CSF), is able to produce noticeable concentrations of trophic factors and inflammatory-related proteins and thus influence the clinical course of ALS. To our knowledge, the evaluation of Lin- cells transplantation for ALS treatment has not been previously reported. Early hematopoietic Lin- cells were isolated from twelve ALS patients’ bone marrow, and later, the suspension of cells was administered into the subarachnoid space by lumbar puncture. Concentrations of selected proteins in the CSF and plasma were quantified by multiplex fluorescent bead-based immunoassays at different timepoints post-transplantation. We also chose microRNAs (miRNAs) related to muscle biology (miRNA-1, miRNA-133a, and miRNA-206) and angiogenesis and inflammation (miRNA-155 and miRNA-378) and tested, for the first time, their expression profiles in the CSF and plasma of ALS patients after Lin- cells transplantation. The injection of bone marrow cells resulted in decreased concentration of selected inflammatory proteins (C3) after Lin- cells injection, particularly in patients who had a better clinical outcome. Moreover, several analyzed miRNAs have changed expression levels in the CSF and plasma of ALS patients subsequent to Lin- cells administration. Interestingly, the expression of miR-206 increased in ALS patients, while miR-378 decreased both in the CSF and plasma one month after the cells’ injection. We propose that autologous lineage-negative early hematopoietic cells injected intrathecally may be a safe and feasible source of material for transplantations to the central nervous system (CNS) environment aimed at anti-inflammatory support provision for ALS adjuvant treatment strategies. Further research is needed to evaluate whether the observed effects could significantly influence the ALS progression

    Polarizing Bubble Collisions

    Full text link
    We predict the polarization of cosmic microwave background (CMB) photons that results from a cosmic bubble collision. The polarization is purely E-mode, symmetric around the axis pointing towards the collision bubble, and has several salient features in its radial dependence that can help distinguish it from a more conventional explanation for unusually cold or hot features in the CMB sky. The anomalous "cold spot" detected by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite is a candidate for a feature produced by such a collision, and the Planck satellite and other proposed surveys will measure the polarization on it in the near future. The detection of such a collision would provide compelling evidence for the string theory landscape.Comment: Published version. 15 pages, 8 figure
    corecore