19 research outputs found

    Migration Patterns, Use of Stopover Areas, and Austral Summer Movements of Swainson\u27s Hawks

    Get PDF
    From 1995 to 1998, we tracked movements of adult Swainson’s Hawks (Buteo swainsoni), using satellite telemetry to characterize migration, important stopover areas, and movements in the austral summer. We tagged 46 hawks from July to September on their nesting grounds in seven U.S. states and two Canadian provinces. Swainson’s Hawks followed three basic routes south on a broad front, converged along the east coast of central Mexico, and followed a concentrated corridor to a communal area in central Argentina for the austral summer. North of 20°N, southward and northward tracks differed little for individuals from east of the continental divide but differed greatly (up to 1700 km) for individuals from west of the continental divide. Hawks left the breeding grounds mid-August to mid-October; departure dates did not differ by location, year, or sex. Southbound migration lasted 42 to 98 days, northbound migration 51 to 82 days. Southbound, 36% of the Swainson’s Hawks departed the nesting grounds nearly 3 weeks earlier than the other radio-marked hawks and made stopovers 9.0–26.0 days long in seven separate areas, mainly in the southern Great Plains, southern Arizona and New Mexico, and northcentral Mexico. The birds stayed in their nonbreeding range for 76 to 128 days. All used a core area in central Argentina within 23% of the 738 800-km2 austral summer range, where they frequently moved long distances (up to 1600 km). Conservation of Swainson’s Hawks must be an international effort that considers habitats used during nesting and non-nesting seasons, including migration stopovers

    Systematic review and meta-analysis on the adverse events of rimonabant treatment: Considerations for its potential use in hepatology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cannabinoid-1 receptor blockers have been proposed in the management of obesity and obesity-related liver diseases (fatty liver as NAFLD or NASH). Due to increasing number of patients to be potentially treated and the need to assess the advantage of this treatment in terms of risk/benefit, we analyze the side events reported during the treatment with rimonabant by a systematic review and meta-analysis of all randomized controlled studies.</p> <p>Methods</p> <p>All published randomized controlled trials using rimonabant <it>versus </it>placebo in adult subjects were retrieved. Relative risks (RR) with 95% confidence interval for relevant adverse events and number needed to harm was calculated.</p> <p>Results</p> <p>Nine trials (n = 9635) were considered. Rimonabant 20 mg was associated with an increased risk of adverse event (RR 1.35; 95%CI 1.17-1.56), increased discontinuation rate (RR 1.79; 95%CI 1.35-2.38), psychiatric (RR 2.35; 95%CI 1.66-3.34), and nervous system adverse events (RR 2.35; 95%CI 1.49-3.70). The number needed to harm for psychiatric adverse events is 30.</p> <p>Conclusion</p> <p>Rimonabant is associated with an increased risk of adverse events. Despite of an increasing interest for its use on fatty liver, the security profile and efficacy it is needs to be carefully assessed before its recommendation. At present the use of rimonabant on fatty liver cannot be recommended.</p

    Italian Association of Clinical Endocrinologists (AME) position statement: a stepwise clinical approach to the diagnosis of gastroenteropancreatic neuroendocrine neoplasms

    Get PDF

    Exploring Liver Mitochondrial Function by 13C-Stable Isotope Breath Tests: Implications in Clinical Biochemistry

    No full text
    : The liver plays a pivotal role in a myriad of metabolic processes, including detoxification, glycolipidic storage and export, and protein synthesis. Breath tests employing (13)C as stable isotope have been introduced to explore such energy-dependent pathways involving mitochondrial function in the liver. Specific substrates are ketoisocaproic acid, methionine, and octanoic acid. In humans, the application of (13)C-breath tests ranges from nonalcoholic and alcoholic liver diseases to liver cirrhosis, hepatocarcinoma, preoperative and postoperative assessment of liver function, and drug-induced liver damage. Studying liver mitochondrial function by (13)C-breath tests represents a complementary tool to monitor complex metabolic processes in health and disease
    corecore