4,260 research outputs found

    Intermediate wave-function statistics

    Full text link
    We calculate statistical properties of the eigenfunctions of two quantum systems that exhibit intermediate spectral statistics: star graphs and Seba billiards. First, we show that these eigenfunctions are not quantum ergodic, and calculate the corresponding limit distribution. Second, we find that they can be strongly scarred by short periodic orbits, and construct sequences of states which have such a limit. Our results are illustrated by numerical computations.Comment: 4 pages, 3 figures. Final versio

    Value distribution of the eigenfunctions and spectral determinants of quantum star graphs

    Full text link
    We compute the value distributions of the eigenfunctions and spectral determinant of the Schrodinger operator on families of star graphs. The values of the spectral determinant are shown to have a Cauchy distribution with respect both to averages over bond lengths in the limit as the wavenumber tends to infinity and to averages over wavenumber when the bond lengths are fixed and not rationally related. This is in contrast to the spectral determinants of random matrices, for which the logarithm is known to satisfy a Gaussian limit distribution. The value distribution of the eigenfunctions also differs from the corresponding random matrix result. We argue that the value distributions of the spectral determinant and of the eigenfunctions should coincide with those of Seba-type billiards.Comment: 32 pages, 9 figures. Final version incorporating referee's comments. Typos corrected, appendix adde

    No quantum ergodicity for star graphs

    Full text link
    We investigate statistical properties of the eigenfunctions of the Schrodinger operator on families of star graphs with incommensurate bond lengths. We show that these eigenfunctions are not quantum ergodic in the limit as the number of bonds tends to infinity by finding an observable for which the quantum matrix elements do not converge to the classical average. We further show that for a given fixed graph there are subsequences of eigenfunctions which localise on pairs of bonds. We describe how to construct such subsequences explicitly. These constructions are analogous to scars on short unstable periodic orbits.Comment: 26 pages, 5 figure

    Spectral Statistics of "Cellular" Billiards

    Full text link
    For a bounded planar domain Ω0\Omega^0 whose boundary contains a number of flat pieces Γi\Gamma_i we consider a family of non-symmetric billiards Ω\Omega constructed by patching several copies of Ω0\Omega^0 along Γi\Gamma_i's. It is demonstrated that the length spectrum of the periodic orbits in Ω\Omega is degenerate with the multiplicities determined by a matrix group GG. We study the energy spectrum of the corresponding quantum billiard problem in Ω\Omega and show that it can be split in a number of uncorrelated subspectra corresponding to a set of irreducible representations α\alpha of GG. Assuming that the classical dynamics in Ω0\Omega^0 are chaotic, we derive a semiclassical trace formula for each spectral component and show that their energy level statistics are the same as in standard Random Matrix ensembles. Depending on whether α{\alpha} is real, pseudo-real or complex, the spectrum has either Gaussian Orthogonal, Gaussian Symplectic or Gaussian Unitary types of statistics, respectively.Comment: 18 pages, 4 figure

    Autocorrelation of Random Matrix Polynomials

    Full text link
    We calculate the autocorrelation functions (or shifted moments) of the characteristic polynomials of matrices drawn uniformly with respect to Haar measure from the groups U(N), O(2N) and USp(2N). In each case the result can be expressed in three equivalent forms: as a determinant sum (and hence in terms of symmetric polynomials), as a combinatorial sum, and as a multiple contour integral. These formulae are analogous to those previously obtained for the Gaussian ensembles of Random Matrix Theory, but in this case are identities for any size of matrix, rather than large-matrix asymptotic approximations. They also mirror exactly autocorrelation formulae conjectured to hold for L-functions in a companion paper. This then provides further evidence in support of the connection between Random Matrix Theory and the theory of L-functions

    The absent-present researcher: data analysis of pre-recorded parent-driven campaign videos

    Get PDF
    In recent years, there has been a proliferation of sophisticated, user-friendly and accessible instruments of video data collection (e.g. mobile/cell phones and tablets) which facilitate video-based research and analysis. This paper reports on the opportunities and challenges of undertaking video analysis by reporting on the qualitative video analysis of a subset of 30 purposively selected videos from #notanurse_but, a parent-driven video campaign initiated by WellChild, a UK charity. This paper provides insight into one way of conducting video analysis, appreciating that a variety of approaches exist and that methodological reflections on analytical work with video recordings are limited. The authors critically consider researcher subjectivity; the everydayness of video data; making assumptions; and the incomplete picture provided by video data. Despite notable limitations to the approach of video analysis as a standalone method, the authors conclude that video analysis is capable of eliciting data that may not otherwise be obtained

    COMPASS: a 2.6m telescope for CMBR polarization studies

    Get PDF
    COMPASS (COsmic Microwave Polarization at Small Scale) is an experiment devoted to measuring the polarization of the CMBR. Its design and characteristics are presented

    Random matrix theory, the exceptional Lie groups, and L-functions

    Full text link
    There has recently been interest in relating properties of matrices drawn at random from the classical compact groups to statistical characteristics of number-theoretical L-functions. One example is the relationship conjectured to hold between the value distributions of the characteristic polynomials of such matrices and value distributions within families of L-functions. These connections are here extended to non-classical groups. We focus on an explicit example: the exceptional Lie group G_2. The value distributions for characteristic polynomials associated with the 7- and 14-dimensional representations of G_2, defined with respect to the uniform invariant (Haar) measure, are calculated using two of the Macdonald constant term identities. A one parameter family of L-functions over a finite field is described whose value distribution in the limit as the size of the finite field grows is related to that of the characteristic polynomials associated with the 7-dimensional representation of G_2. The random matrix calculations extend to all exceptional Lie groupsComment: 14 page

    Applications and generalizations of Fisher-Hartwig asymptotics

    Full text link
    Fisher-Hartwig asymptotics refers to the large nn form of a class of Toeplitz determinants with singular generating functions. This class of Toeplitz determinants occurs in the study of the spin-spin correlations for the two-dimensional Ising model, and the ground state density matrix of the impenetrable Bose gas, amongst other problems in mathematical physics. We give a new application of the original Fisher-Hartwig formula to the asymptotic decay of the Ising correlations above TcT_c, while the study of the Bose gas density matrix leads us to generalize the Fisher-Hartwig formula to the asymptotic form of random matrix averages over the classical groups and the Gaussian and Laguerre unitary matrix ensembles. Another viewpoint of our generalizations is that they extend to Hankel determinants the Fisher-Hartwig asymptotic form known for Toeplitz determinants.Comment: 25 page
    • …
    corecore