3,536 research outputs found
Direct Detection of Giant Close-In Planets Around the Source Stars of Caustic-Crossing Microlensing Events
We propose a direct method to detect close-in giant planets orbiting stars in
the Galactic bulge. This method uses caustic-crossing binary microlensing
events discovered by survey teams monitoring the bulge to measure light from a
planet orbiting the source star. When the planet crosses the caustic, it is
more magnified than the source star; its light is magnified by two orders of
magnitude for Jupiter size planets. If the planet is a giant close to the star,
it may be bright enough to make a significant deviation in the light curve of
the star. Detection of this deviation requires intensive monitoring of the
microlensing light curve using a 10-meter class telescope for a few hours after
the caustic. This is the only method yet proposed to directly detect close-in
planets around stars outside the solar neighborhood.Comment: 4 pages, 2 figures. Submitted to ApJ Letter
Laser cooling of a nanomechanical resonator mode to its quantum ground state
We show that it is possible to cool a nanomechanical resonator mode to its
ground state. The proposed technique is based on resonant laser excitation of a
phonon sideband of an embedded quantum dot. The strength of the sideband
coupling is determined directly by the difference between the electron-phonon
couplings of the initial and final states of the quantum dot optical
transition. Possible applications of the technique we describe include
generation of non-classical states of mechanical motion.Comment: 5 pages, 3 figures, revtex
Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires
The thermal conductance by phonons of a quasi-one-dimensional solid with
isotope or defect scattering is studied using the Landauer formalism for
thermal transport. The conductance shows a crossover from localized to Ohmic
behavior, just as for electrons, but the nature of this crossover is modified
by delocalization of phonons at low frequency. A scalable numerical
transfer-matrix technique is developed and applied to model
quasi-one-dimensional systems in order to confirm simple analytic predictions.
We argue that existing thermal conductivity data on semiconductor nanowires,
showing an unexpected linear dependence, can be understood through a model that
combines incoherent surface scattering for short-wavelength phonons with nearly
ballistic long-wavelength phonons. It is also found that even when strong
phonon localization effects would be observed if defects are distributed
throughout the wire, localization effects are much weaker when defects are
localized at the boundary, as in current experiments.Comment: 13 page
Angular Radii of Stars via Microlensing
We outline a method by which the angular radii of giant and main sequence
stars in the Galactic bulge can be measured to a few percent accuracy. The
method combines ground-based photometry of caustic-crossing bulge microlensing
events, with a handful of precise astrometric measurements of the lensed star
during the event, to measure the angular radius of the source, theta_*. Dense
photometric coverage of one caustic crossing yields the crossing timescale dt.
Less frequent coverage of the entire event yields the Einstein timescale t_E
and the angle phi of source trajectory with respect to the caustic. The
photometric light curve solution predicts the motion of the source centroid up
to an orientation on the sky and overall scale. A few precise astrometric
measurements therefore yield theta_E, the angular Einstein ring radius. Then
the angular radius of the source is obtained by theta_*=theta_E(dt/t_E)
sin(phi). We argue that theta_* should be measurable to a few percent accuracy
for Galactic bulge giant stars using ground-based photometry from a network of
small (1m-class) telescopes, combined with astrometric observations with a
precision of ~10 microarcsec to measure theta_E. We find that a factor of ~50
times fewer photons are required to measure theta_E to a given precision for
binary-lens events than single-lens events. Adopting parameters appropriate to
the Space Interferometry Mission (SIM), ~7 min of SIM time is required to
measure theta_E to ~5% accuracy for giant sources in the bulge. For
main-sequence sources, theta_E can be measured to ~15% accuracy in ~1.4 hours.
With 10 hrs of SIM time, it should be possible to measure theta_* to ~5% for
\~80 giant stars, or to 15% for ~7 main sequence stars. A byproduct of such a
campaign is a significant sample of precise binary-lens mass measurements.Comment: 13 pages, 3 figures. Revised version, minor changes, required SIM
integration times revised upward by ~60%. Accepted to ApJ, to appear in the
March 20, 2003 issue (v586
Black Hole Binary Formation in the Expanding Universe --- Three Body Problem Approximation ---
We study black hole MACHO binary formation through three-body interactions in
the early universe at s. The probability distribution functions
of the eccentricity and the semimajor axis of binaries as well as of the
coalescence time are obtained assuming that the black holes are randomly formed
in space. We confirm that the previous order-of-magnitude estimate for the
binary parameters is valid within error. We find that the
coalescence rate of the black hole MACHO binaries is events/year/galaxy taking into consideration several possible
factors which may affect this estimate. This suggests that the event rate of
coalescing binary black holes will be at least several events per year within
15 Mpc. The first LIGO/VIRGO interferometers in 2001 will be able to verify
whether the MACHOs are black holes or not.Comment: Revtex, 25 pages, 10 figures, to appear in PR
Parameter estimation on gravitational waves from neutron-star binaries with spinning components
Inspiraling binary neutron stars are expected to be one of the most
significant sources of gravitational-wave signals for the new generation of
advanced ground-based detectors. We investigate how well we could hope to
measure properties of these binaries using the Advanced LIGO detectors, which
began operation in September 2015. We study an astrophysically motivated
population of sources (binary components with masses
-- and spins of less than )
using the full LIGO analysis pipeline. While this simulated population covers
the observed range of potential binary neutron-star sources, we do not exclude
the possibility of sources with parameters outside these ranges; given the
existing uncertainty in distributions of mass and spin, it is critical that
analyses account for the full range of possible mass and spin configurations.
We find that conservative prior assumptions on neutron-star mass and spin lead
to average fractional uncertainties in component masses of , with
little constraint on spins (the median upper limit on the spin of the
more massive component is ). Stronger prior constraints on
neutron-star spins can further constrain mass estimates, but only marginally.
However, we find that the sky position and luminosity distance for these
sources are not influenced by the inclusion of spin; therefore, if LIGO detects
a low-spin population of BNS sources, less computationally expensive results
calculated neglecting spin will be sufficient for guiding electromagnetic
follow-up.Comment: 10 pages, 9 figure
In-Trail Procedure Air Traffic Control Procedures Validation Simulation Study
In August 2007, Airservices Australia (Airservices) and the United States National Aeronautics and Space Administration (NASA) conducted a validation experiment of the air traffic control (ATC) procedures associated with the Automatic Dependant Surveillance-Broadcast (ADS-B) In-Trail Procedure (ITP). ITP is an Airborne Traffic Situation Awareness (ATSA) application designed for near-term use in procedural airspace in which ADS-B data are used to facilitate climb and descent maneuvers. NASA and Airservices conducted the experiment in Airservices simulator in Melbourne, Australia. Twelve current operational air traffic controllers participated in the experiment, which identified aspects of the ITP that could be improved (mainly in the communication and controller approval process). Results showed that controllers viewed the ITP as valid and acceptable. This paper describes the experiment design and results
Search for Gravitational Wave Ringdowns from Perturbed Intermediate Mass Black Holes in LIGO-Virgo Data from 2005-2010
We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 less than or equal to italic f0/Hz less than or equal to 2000 and decay timescale 0.0001 approximately less than t/s approximately less than 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 less than or equal to M/solar mass less than or equal to 450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100 less than or equal to M/solar mass 150, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of 6:9 x 10(exp 8) Mpc(exp -3)yr(exp -1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l=m=2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results
Qubit compatible superconducting interconnects
We present a fabrication process for fully superconducting interconnects
compatible with superconducting qubit technology. These interconnects allow for
the 3D integration of quantum circuits without introducing lossy amorphous
dielectrics. They are composed of indium bumps several microns tall separated
from an aluminum base layer by titanium nitride which serves as a diffusion
barrier. We measure the whole structure to be superconducting (transition
temperature of 1.1K), limited by the aluminum. These interconnects have an
average critical current of 26.8mA, and mechanical shear and thermal cycle
testing indicate that these devices are mechanically robust. Our process
provides a method that reliably yields superconducting interconnects suitable
for use with superconducting qubits
Engaging Students, Teachers, and the Public with NASA Astromaterials Research and Exploration Science (ARES) Assets
Engaging students, teachers, and the public with NASA Astromaterials Research and Exploration Science (ARES) assets, including Science, Technology, Engineering and Mathematics (STEM) experts and NASA curation astromaterial samples, provides an extraordinary opportunity to connect citizens with authentic aspects unique to our nation's space program. Effective engagement can occur through both virtual connections such as webcasts and in-person connections at educator workshops and public outreach events. Access to NASA ARES assets combined with adaptable resources and techniques that engage and promote scientific thinking helps translate the science and research being facilitated through NASA exploration, elicits a curiosity that aims to carry over even after a given engagement, and prepares our next generation of scientific explorers
- …
