151 research outputs found

    "Tolerization" of human T-helper cell clones by chronic exposure to alloantigen

    Get PDF
    Induction of clonal anergy in T-helper (Th) cells may have a role in regulating immune responses. A model system for studying Th cell tolerization at the clonal level in vitro could be useful for investigating the mechanisms involved. Accordingly, alloreactive helper cells were maintained in culture with interleukin 2 (IL 2) by intermittent stimulation with specific antigen. Regardless of the frequency of antigen stimulation, clones of age less than ca. 35 population doublings (PD) were found to undergo antigen-specific autocrine clonal expansion in the absence of exogenous IL 2. Such young clones (designated as phase I) could therefore not be "tolerized" by frequent exposure to antigen. In contrast, most clones of age greater than ca. 35 PD could be tolerized by frequent exposure to antigen (designated as phase II clones). Their autocrine proliferation was then blocked, although they still recognized antigen specifically as shown by their retained ability to secrete interferon-gamma (IFN-gamma) and granulocyte-macrophage colony stimulating factor (GM-CSF). The mechanism of response failure involved both an inability to upregulate IL 2 receptors in the absence of exogenous IL 2, as well as an inability to secrete IL 2. These defects were not overcome by stimulation with mitogens or calcium ionophore and phorbol esther in place of alloantigen. T-cell receptor, alpha, beta, and gamma-chain gene rearrangements remained identical in phase I and phase II clones. Tolerization of phase II clones could be avoided by increasing the period between antigen exposures. Despite this, whether or not phase II cells were capable of autocrine proliferation, they were found to have acquired the novel function of inducing suppressive activity in fresh lymphocytes. Suppressor-induction was blocked by the broadly reactive MHC class II-specific monoclonal antibody (moAb) TU39, but not by moAb preferentially reacting only with HLA-DR, DQ, or DP. Sequential immunoprecipitation on T-cell clones showed the presence of a putative non-DR, DQ, DP, TU39+ molecule on phase II clones. However, this molecule was also found on phase I clones. The nature of the TU39-blockable suppressor-inducing determinant present on phase II but not on (most) phase I clones thus remains to be clarified. In addition to suppressor-induction activity, phase II clones also acquired lytic potential as measured in a lectin approximation system. Cytotoxic (CTX) potential was also not influenced by the frequency of antigenic stimulation and could be viewed as a constitutive modulation of clonal functio

    Acceleration of generalized hypergeometric functions through precise remainder asymptotics

    Full text link
    We express the asymptotics of the remainders of the partial sums {s_n} of the generalized hypergeometric function q+1_F_q through an inverse power series z^n n^l \sum_k c_k/n^k, where the exponent l and the asymptotic coefficients {c_k} may be recursively computed to any desired order from the hypergeometric parameters and argument. From this we derive a new series acceleration technique that can be applied to any such function, even with complex parameters and at the branch point z=1. For moderate parameters (up to approximately ten) a C implementation at fixed precision is very effective at computing these functions; for larger parameters an implementation in higher than machine precision would be needed. Even for larger parameters, however, our C implementation is able to correctly determine whether or not it has converged; and when it converges, its estimate of its error is accurate.Comment: 36 pages, 6 figures, LaTeX2e. Fixed sign error in Eq. (2.28), added several references, added comparison to other methods, and added discussion of recursion stabilit

    Історія польських поселень Володарсько-Волинського району

    Get PDF
    В даній роботі описано 10 сіл з переважаючим польським населенням, на що вказують архівні матеріали і опитування жителів сіл

    Effectiveness of a group-based psychosocial program to prevent depression and anxiety in older people attending primary health care centres: a randomised controlled trial

    Get PDF
    Background: Evidence about the effectiveness of psychosocial interventions to reduce the incidence of depression and anxiety and promote subjective well-being in older people is limited, particularly in Latin-American countries. This study thus aims to assess a program specifically designed to address this issue in persons aged 65 to 80 and attending primary health care centres. Method: Older people who use primary care centres are to be randomly assigned to the program or to a control group. Only independent users will be included; those having had a major depressive disorder or an anxiety disorder in the last 6 months will be excluded. The program is group based; it includes cognitive stimulation, expansion of social support networks and cognitive behaviour strategies. Depressive and anxiety symptoms and disorders, as well as psychological well-being, will be assessed using standardised instruments, once before implementing the program and later, after 18 and 36 weeks. Discussion: Primary care is a setting where interventions to improve mental health can be beneficial. Providing evidence-based programs that work with older people is a priority for public mental health

    Two-loop HTL Thermodynamics with Quarks

    Get PDF
    We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure-glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for N_f=2 and with exact numerical results obtained in the large-N_f limit.Comment: 33 pages, 6 figure

    Mesodermal Progenitor Cells (MPCs) Differentiate into Mesenchymal Stromal Cells (MSCs) by Activation of Wnt5/Calmodulin Signalling Pathway

    Get PDF
    Mesenchymal Stromal Cells (MSCs) remain poorly characterized because of the absence of manifest physical, phenotypic, and functional properties in cultured cell populations. Despite considerable research on MSCs and their clinical application, the biology of these cells is not fully clarified and data on signalling activation during mesenchymal differentiation and proliferation are controversial. The role of Wnt pathways is still debated, partly due to culture heterogeneity and methodological inconsistencies. Recently, we described a new bone marrow cell population isolated from MSC cultures that we named Mesodermal Progenitor Cells (MPCs) for their mesenchymal and endothelial differentiation potential. An optimized culture method allowed the isolation from human adult bone marrow of a highly pure population of MPCs (more than 97%), that showed the distinctive SSEA-4+CD105+CD90(neg) phenotype and not expressing MSCA-1 antigen. Under these selective culture conditions the percentage of MSCs (SSEA-4(neg)CD105+CD90(bright) and MSCA-1+), in the primary cultures, resulted lower than 2%.We demonstrate that MPCs differentiate to MSCs through an SSEA-4+CD105+CD90(bright) early intermediate precursor. Differentiation paralleled the activation of Wnt5/Calmodulin signalling by autocrine/paracrine intense secretion of Wnt5a and Wnt5b (p<0.05 vs uncondictioned media), which was later silenced in late MSCs (SSEA-4(neg)). We found the inhibition of this pathway by calmidazolium chloride specifically blocked mesenchymal induction (ID₅₀ =  0.5 µM, p<0.01), while endothelial differentiation was unaffected.The present study describes two different putative progenitors (early and late MSCs) that, together with already described MPCs, could be co-isolated and expanded in different percentages depending on the culture conditions. These results suggest that some modifications to the widely accepted MSC nomenclature are required

    Resource Quantity Affects Benthic Microbial Community Structure and Growth Efficiency in a Temperate Intertidal Mudflat

    Get PDF
    Estuaries cover <1% of marine habitats, but the carbon dioxide (CO2) effluxes from these net heterotrophic systems contribute significantly to the global carbon cycle. Anthropogenic eutrophication of estuarine waterways increases the supply of labile substrates to the underlying sediments. How such changes affect the form and functioning of the resident microbial communities remains unclear. We employed a carbon-13 pulse-chase experiment to investigate how a temperate estuarine benthic microbial community at 6.5°C responded to additions of marine diatom-derived organic carbon equivalent to 4.16, 41.60 and 416.00 mmol C m−2. The quantities of carbon mineralized and incorporated into bacterial biomass both increased significantly, albeit differentially, with resource supply. This resulted in bacterial growth efficiency increasing from 0.40±0.02 to 0.55±0.04 as substrates became more available. The proportions of diatom-derived carbon incorporated into individual microbial membrane fatty acids also varied with resource supply. Future increases in labile organic substrate supply have the potential to increase both the proportion of organic carbon being retained within the benthic compartment of estuaries and also the absolute quantity of CO2 outgassing from these environments

    Fine-Scale Bacterial Beta Diversity within a Complex Ecosystem (Zodletone Spring, OK, USA): The Role of the Rare Biosphere

    Get PDF
    The adaptation of pyrosequencing technologies for use in culture-independent diversity surveys allowed for deeper sampling of ecosystems of interest. One extremely well suited area of interest for pyrosequencing-based diversity surveys that has received surprisingly little attention so far, is examining fine scale (e.g. micrometer to millimeter) beta diversity in complex microbial ecosystems.We examined the patterns of fine scale Beta diversity in four adjacent sediment samples (1mm apart) from the source of an anaerobic sulfide and sulfur rich spring (Zodletone spring) in southwestern Oklahoma, USA. Using pyrosequencing, a total of 292,130 16S rRNA gene sequences were obtained. The beta diversity patterns within the four datasets were examined using various qualitative and quantitative similarity indices. Low levels of Beta diversity (high similarity indices) were observed between the four samples at the phylum-level. However, at a putative species (OTU(0.03)) level, higher levels of beta diversity (lower similarity indices) were observed. Further examination of beta diversity patterns within dominant and rare members of the community indicated that at the putative species level, beta diversity is much higher within rare members of the community. Finally, sub-classification of rare members of Zodletone spring community based on patterns of novelty and uniqueness, and further examination of fine scale beta diversity of each of these subgroups indicated that members of the community that are unique, but non novel showed the highest beta diversity within these subgroups of the rare biosphere.The results demonstrate the occurrence of high inter-sample diversity within seemingly identical samples from a complex habitat. We reason that such unexpected diversity should be taken into consideration when exploring gamma diversity of various ecosystems, as well as planning for sequencing-intensive metagenomic surveys of highly complex ecosystems

    Benthic pH gradients across a range of shelf sea sediment types linked to sediment characteristics and seasonal variability

    Get PDF
    This study used microelectrodes to record pH profiles in fresh shelf sea sediment cores collected across a range of different sediment types within the Celtic Sea. Spatial and temporal variability was captured during repeated measurements in 2014 and 2015. Concurrently recorded oxygen microelectrode profiles and other sedimentary parameters provide a detailed context for interpretation of the pH data. Clear differences in profiles were observed between sediment type, location and season. Notably, very steep pH gradients exist within the surface sediments (10–20 mm), where decreases greater than 0.5 pH units were observed. Steep gradients were particularly apparent in fine cohesive sediments, less so in permeable sandier matrices. We hypothesise that the gradients are likely caused by aerobic organic matter respiration close to the sediment–water interface or oxidation of reduced species at the base of the oxic zone (NH4+, Mn2+, Fe2+, S−). Statistical analysis suggests the variability in the depth of the pH minima is controlled spatially by the oxygen penetration depth, and seasonally by the input and remineralisation of deposited organic phytodetritus. Below the pH minima the observed pH remained consistently low to maximum electrode penetration (ca. 60 mm), indicating an absence of sub-oxic processes generating H+ or balanced removal processes within this layer. Thus, a climatology of sediment surface porewater pH is provided against which to examine biogeochemical processes. This enhances our understanding of benthic pH processes, particularly in the context of human impacts, seabed integrity, and future climate changes, providing vital information for modelling benthic response under future climate scenarios
    corecore