127 research outputs found

    Numerical Simulations of N=(1,1) SYM{1+1} with Large Supersymmetry Breaking

    Get PDF
    We consider the N=(1,1)N=(1,1) SYM theory that is obtained by dimensionally reducing SYM theory in 2+1 dimensions to 1+1 dimensions and discuss soft supersymmetry breaking. We discuss the numerical simulation of this theory using SDLCQ when either the boson or the fermion has a large mass. We compare our result to the pure adjoint fermion theory and pure adjoint boson DLCQ calculations of Klebanov, Demeterfi, and Bhanot and of Kutasov. With a large boson mass we find that it is necessary to add additional operators to the theory to obtain sensible results. When a large fermion mass is added to the theory we find that it is not necessary to add operators to obtain a sensible theory. The theory of the adjoint boson is a theory that has stringy bound states similar to the full SYM theory. We also discuss another theory of adjoint bosons with a spectrum similar to that obtained by Klebanov, Demeterfi, and Bhanot.Comment: 12 pages, 4 figure

    Wave functions and properties of massive states in three-dimensional supersymmetric Yang-Mills theory

    Get PDF
    We apply supersymmetric discrete light-cone quantization (SDLCQ) to the study of supersymmetric Yang-Mills theory on R x S^1 x S^1. One of the compact directions is chosen to be light-like and the other to be space-like. Since the SDLCQ regularization explicitly preserves supersymmetry, this theory is totally finite, and thus we can solve for bound-state wave functions and masses numerically without renormalizing. We present an overview of all the massive states of this theory, and we see that the spectrum divides into two distinct and disjoint sectors. In one sector the SDLCQ approximation is only valid up to intermediate coupling. There we find a well defined and well behaved set of states, and we present a detailed analysis of these states and their properties. In the other sector, which contains a completely different set of states, we present a much more limited analysis for strong coupling only. We find that, while these state have a well defined spectrum, their masses grow with the transverse momentum cutoff. We present an overview of these states and their properties.Comment: RevTeX, 25 pages, 16 figure

    Simulation of Dimensionally Reduced SYM-Chern-Simons Theory

    Get PDF
    A supersymmetric formulation of a three-dimensional SYM-Chern-Simons theory using light-cone quantization is presented, and the supercharges are calculated in light-cone gauge. The theory is dimensionally reduced by requiring all fields to be independent of the transverse dimension. The result is a non-trivial two-dimensional supersymmetric theory with an adjoint scalar and an adjoint fermion. We perform a numerical simulation of this SYM-Chern-Simons theory in 1+1 dimensions using SDLCQ (Supersymmetric Discrete Light-Cone Quantization). We find that the character of the bound states of this theory is very different from previously considered two-dimensional supersymmetric gauge theories. The low-energy bound states of this theory are very ``QCD-like.'' The wave functions of some of the low mass states have a striking valence structure. We present the valence and sea parton structure functions of these states. In addition, we identify BPS-like states which are almost independent of the coupling. Their masses are proportional to their parton number in the large-coupling limit.Comment: 18pp. 7 figures, uses REVTe

    Two-Point Stress-Tensor Correlator in N=1 SYM(2+1)

    Get PDF
    Recent advances in string theory have highlighted the need for reliable numerical methods to calculate correlators at strong coupling in supersymmetric theories. We present a calculation of the correlator in N=1 SYM theory in 2+1 dimensions. The numerical method we use is supersymmetric discrete light-cone quantization (SDLCQ), which preserves the supersymmetry at every order of the approximation and treats fermions and bosons on the same footing. This calculation is done at large NcN_c. For small and intermediate r the correlator converges rapidly for all couplings. At small r the correlator behaves like 1/r^6, as expected from conformal field theory. At large r the correlator is dominated by the BPS states of the theory. There is, however, a critical value of the coupling where the large-r correlator goes to zero, suggesting that the large-r correlator can only be trusted to some finite coupling which depends on the transverse resolution. We find that this critical coupling grows linearly with the square root of the transverse momentum resolution.Comment: 16 pp., 9 figure

    Properties of the Bound States of Super-Yang-Mills-Chern-Simons Theory

    Get PDF
    We apply supersymmetric discrete light-cone quantization (SDLCQ) to the study of supersymmetric Yang-Mills-Chern-Simons (SYM-CS) theory on R x S^1 x S^1. One of the compact directions is chosen to be light-like and the other to be space-like. Since the SDLCQ regularization explicitly preserves supersymmetry, this theory is totally finite, and thus we can solve for bound-state wave functions and masses numerically without renormalizing. The Chern-Simons term is introduced here to provide masses for the particles while remaining totally within a supersymmetric context. We examine the free, weak and strong-coupling spectrum. The transverse direction is discussed as a model for universal extra dimensions in the gauge sector. The wave functions are used to calculate the structure functions of the lowest mass states. We discuss the properties of Kaluza-Klein states and focus on how they appear at strong coupling. We also discuss a set of anomalously light states which are reflections of the exact Bogomol'nyi-Prasad-Sommerfield states of the underlying SYM theory.Comment: 20pp., 21 figure

    VisIVO - Integrated Tools and Services for Large-Scale Astrophysical Visualization

    Full text link
    VisIVO is an integrated suite of tools and services specifically designed for the Virtual Observatory. This suite constitutes a software framework for effective visual discovery in currently available (and next-generation) very large-scale astrophysical datasets. VisIVO consists of VisiVO Desktop - a stand alone application for interactive visualization on standard PCs, VisIVO Server - a grid-enabled platform for high performance visualization and VisIVO Web - a custom designed web portal supporting services based on the VisIVO Server functionality. The main characteristic of VisIVO is support for high-performance, multidimensional visualization of very large-scale astrophysical datasets. Users can obtain meaningful visualizations rapidly while preserving full and intuitive control of the relevant visualization parameters. This paper focuses on newly developed integrated tools in VisIVO Server allowing intuitive visual discovery with 3D views being created from data tables. VisIVO Server can be installed easily on any web server with a database repository. We discuss briefly aspects of our implementation of VisiVO Server on a computational grid and also outline the functionality of the services offered by VisIVO Web. Finally we conclude with a summary of our work and pointers to future developments

    An X-ray and optical study of the cluster A33

    Get PDF
    We report the first detailed X-ray and optical observations of the medium-distant cluster A33 obtained with the Beppo-SAX satellite and with the UH 2.2m and Keck II telescopes at Mauna Kea. The information deduced from X-ray and optical imaging and spectroscopic data allowed us to identify the X-ray source 1SAXJ0027.2-1930 as the X-ray counterpart of the A33 cluster. The faint, F_{2-10 keV} \approx 2.4 \times 10^{-13} \ergscm2, X-ray source 1SAXJ0027.2-1930, 2\sim 2 arcmin away from the optical position of the cluster as given in the Abell catalogue, is identified with the central region of A33. Based on six cluster galaxy redshifts, we determine the redshift of A33, z=0.2409z=0.2409; this is lower than the value derived by Leir and Van Den Bergh (1977). The source X-ray luminosity, L_{2-10 keV} = 7.7 \times 10^{43} \ergs, and intracluster gas temperature, T=2.9T = 2.9 keV, make this cluster interesting for cosmological studies of the cluster LXTL_X-T relation at intermediate redshifts. Two other X-ray sources in the A33 field are identified. An AGN at z==0.2274, and an M-type star, whose emission are blended to form an extended X-ray emission 4\sim 4 arcmin north of the A33 cluster. A third possibly point-like X-ray source detected 3\sim 3 arcmin north-west of A33 lies close to a spiral galaxy at z==0.2863 and to an elliptical galaxy at the same redshift as the cluster.Comment: 9 pages, 6 Figures, Latex (using psfig,l-aa), to appear in Astronomy and Astrophysics S. (To get better quality copies of Figs.1-3 send an email to: [email protected]). A&AS, in pres

    Clustering analysis for muon tomography data elaboration in the Muon Portal project

    Get PDF
    Clustering analysis is one of multivariate data analysis techniques which allows to gather statistical data units into groups, in order to minimize the logical distance within each group and to maximize the one between different groups. In these proceedings, the authors present a novel approach to the muontomography data analysis based on clustering algorithms. As a case study we present the Muon Portal project that aims to build and operate a dedicated particle detector for the inspection of harbor containers to hinder the smuggling of nuclear materials. Clustering techniques, working directly on scattering points, help to detect the presence of suspicious items inside the container, acting, as it will be shown, as a filter for a preliminary analysis of the data

    Weak Lensing Mass Reconstruction of the Galaxy Cluster Abell 209

    Get PDF
    Weak lensing applied to deep optical images of clusters of galaxies provides a powerful tool to reconstruct the distribution of the gravitating mass associated to these structures. We use the shear signal extracted by an analysis of deep exposures of a region centered around the galaxy cluster Abell 209, at redshift z=0.2, to derive both a map of the projected mass distribution and an estimate of the total mass within a characteristic radius. We use a series of deep archival R-band images from CFHT-12k, covering an area of 0.3 deg^2. We determine the shear of background galaxy images using a new implementation of the modified Kaiser-Squires-Broadhurst pipeline for shear determination, which we has been tested against the ``Shear TEsting Program 1 and 2'' simulations. We use mass aperture statistics to produce maps of the 2 dimensional density distribution, and parametric fits using both Navarro-Frenk-White (NFW) and singular-isothermal-sphere profiles to constrain the total mass. The projected mass distribution shows a pronounced asymmetry, with an elongated structure extending from the SE to the NW. This is in general agreement with the optical distribution previously found by other authors. A similar elongation was previously detected in the X-ray emission map, and in the distribution of galaxy colours. The circular NFW mass profile fit gives a total mass of M_{200} = 7.7^{+4.3}_{-2.7} 10^{14} solar masses inside the virial radius r_{200} = 1.8\pm 0.3 Mpc. The weak lensing profile reinforces the evidence for an elongated structure of Abell 209, as previously suggested by studies of the galaxy distribution and velocities.Comment: accepted by A&A, 15 pages, 11 figure
    corecore