21 research outputs found

    A study to assess changes in myocardial perfusion after treatment with spinal cord stimulation and percutaneous myocardial laser revascularisation; data from a randomised trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal cord stimulation (SCS) and percutaneous myocardial laser revascularisation (PMR) are treatment modalities used to treat refractory angina pectoris, with the major aim of such treatment being the relief of disabling symptoms. This study compared the change in myocardial perfusion following SCS and PMR treatment.</p> <p>Methods</p> <p>Subjects with Canadian Cardiovascular Society class 3/4 angina and reversible perfusion defects as assessed by single-photon emission computed tomographic myocardial perfusion scintigraphy were randomised to SCS (34) or PMR (34). 28 subjects in each group underwent repeat myocardial perfusion imaging 12 months post intervention. Visual scoring of perfusion images was performed using a 20-segment model and a scale of 0 to 4.</p> <p>Results</p> <p>The mean (standard deviation) baseline summed rest score (SRS) and stress scores (SSS) were 4.6 (5.7) and 13.6 (9.0) in the PMR group and 6.1 (7.4) and 16.8 (11.6) in the SCS group. At 12 months, SRS was 5.5 (6.0) and SSS 15.3 (11.3) in the PMR group and 6.9 (8.2) and 15.1 (10.9) in the SCS group. There was no significant difference between the two treatment groups adjusted for baseline (p = 1.0 for SRS, p = 0.29 for SSS).</p> <p>Conclusion</p> <p>There was no significant difference in myocardial perfusion one year post treatment with SCS or PMR.</p

    Spinal cord stimulation in the treatment of refractory angina: systematic review and meta-analysis of randomised controlled trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this paper was undertake a systematic review and meta-analysis of the use of spinal cord stimulation (SCS) in the management of refractory angina.</p> <p>Methods</p> <p>We searched a number of electronic databases including Medline, Embase and Cochrane Library up to February 2008 to identify randomised controlled trials (RCTs) reporting exercise capacity, ischemic burden, functional class, quality of life, usage of anti-anginal medication, costs and adverse events including mortality. Results were reported both descriptively for each study and using random effects meta-analysis. Given the variety in outcomes reported, some outcome results were pooled as standardised mean differences (SMD) and reported in standard deviation units.</p> <p>Results</p> <p>Seven RCTs were identified in a total of 270 refractory angina patients. The outcomes of SCS were found to be similar when directly compared to coronary artery bypass grafting (CABG) and percutaneous myocardial laser revascularisation (PMR). Compared to a 'no stimulation' control, there was some evidence of improvement in all outcomes following SCS implantation with significant gains observed in pooled exercise capacity (SMD: 0.76, 0.07 to 1.46, <it>p </it>= 0.03) and health-related quality of life (SMD: 0.83, 95% CI: 0.32 to 1.34, <it>p </it>= 0.001). Trials were small and were judged to range considerably in their quality. The healthcare costs of SCS appeared to be lower than CABG at 2-years follow up.</p> <p>Conclusion</p> <p>SCS appears to be an effective and safe treatment option in the management of refractory angina patients and of similar efficacy and safety to PMR, a potential alternative treatment. Further high quality RCT and cost effectiveness evidence is needed before SCS can be accepted as a routine treatment for refractory angina.</p

    Electrical neuromodulation for patients with cardiac diseases

    No full text
    <p>In this review we discuss the position of electrical neuromodulation as a safe and reversible adjuvant therapy for treatment of patients with chronic cardiac diseases who have become refractory to conventional strategies. In patients with chronic refractory angina, electrical neuromodulation, independent of the applied modality, has shown to reduce complaints of angina, to enhance exercise capacity, to improve quality of life and to employ anti-ischaemic effects. To date, electrical neuromodulation seems to be one of the best adjuvant therapies for these patients. In addition, neuromodulation in the treatment of heart failure and resistant arrhythmias is the subject of several ongoing studies.</p>
    corecore