28 research outputs found

    Studies on the proximity effect in Bi-based high-temperature superconductor/manganite heterostructures

    Full text link
    The effect of proximity of the magnetism of the Pr-based manganite (Pr0.6Sr0.4MnO3) on the superconductivity of Bi-based high-temperature superconductor (Bi1.75Pb0.25Sr2Ca2Cu3O10+d) was studied based on the results obtained from the magnetotransport and magnetization measurements. Decrease in the values of the upper critical field (HC2(0)) and an increase in the width of the superconducting transition (Delta TC) of Bi1.75Pb0.25Sr2Ca2Cu3O10+d were observed in proximity with the manganite. The combined effect of magnetic exchange interaction arising from the manganite, the leakage of Cooper-pairs from the superconductor into the manganite, and the diffusion and transport of spin-polarized electrons from the manganite into the superconductor were found to modify the superconducting properties of Bi1.75Pb0.25Sr2Ca2Cu3O10+d. The stacking sequence of the individual layers in these heterostructures was found to dictate the ground state properties of the heterostructure. As a consequence of the proximity effect, the colossal-magnetoresistance (CMR) ratio as high as ~ 99 % observed in the heterostructure makes the thin film heterostructures promising candidates for potential technological applications.Comment: 29 pages, 14 figure

    5,7-Bis(1-benzothio­phen-2-yl)-2,3-dihydro­thieno[3,4-b][1,4]dioxine

    Get PDF
    In the title compound, C22H14O2S3, the dioxane ring is disordered over two sites [site occupancies = 0.623 (3) and 0.377 (3)]; both components adopt half-chair conformations. The two benzothio­phene ring systems are asymmetrically twisted away from the attached thio­phene ring [dihedral angles = 20.57 (3) and 6.70 (3)°] and are oriented at an angle of 26.83 (3)°. No significant hydrogen bonding or π–π inter­actions are observed in the crystal structure

    Evolution of Superconducting Properties of Coexistent Bi-2212 and Bi-2223 phases in BSCCO

    Get PDF
    391-397The evolution of superconducting properties of BSCCO superconductors, inadvertently hosting the two superconducting phases Bi-2212 and Bi-2223 have been investigated in pristine and Pb doped BSCCO. The superconducting transition temperature TC of Bi-2212 phase monotonically increases with increasing Bi-2223 phase fraction. On the other hand Bi-2223 phase exhibits depression in TC for its lower phase fractions (<24%) but attains its bulk value as Bi-2223 phase fraction is increased to 30%. This behavior has been rationalized by invoking the interplay of proximity effects between the two coexisting phases and establishment of Bi-2223 superconducting percolation path. In addition to aiding the formation of BSCCO with higher Bi-2223 phase fraction, the Pb substitution also leads to an enhancement of critical current density by the creation of pinning centres
    corecore