47,826 research outputs found

    The Stellar Halo in the Large Magellanic Cloud: Mass, Luminosity, and Microlensing Predictions

    Full text link
    Recently obtained kinematic data has shown that the Large Magellanic Cloud (LMC) possesses an old stellar halo. In order to further characterize the properties of this halo, parametric King models are fit to the surface density of RR Lyrae stars. Using data from both the MACHO and OGLE II microlensing surveys, the model fits yield the center of their distribution at RA = 05:21.1+-0.8, Dec = -69:45+-6 (J2000) and a core radius of 1.42+-0.12 kpc. As a check the halo model is compared with RR Lyrae star counts in fields near the LMC's periphery previously surveyed with photographic plates. These data, however, require a cautious interpretation. Several topics regarding the LMC stellar halo are discussed. First, the properties of the halo imply a global mass-to-light ratio of M/L_V = 5.3+-2.1 and a total mass of 1.6+-0.6 10^10 M_sun for the LMC in good agreement with estimates based on the rotation curve. Second, although the LMC's disk and halo are kinematically distinct, the shape of the surface density profile of the halo is remarkably similar to that of the young disk. For example, the best-fit exponential scale length for the RR Lyrae stars is 1.47+-0.08 kpc, which compares to 1.46 kpc for the LMC's blue light. In the Galaxy, the halo and disk do not resemble each other like this. Finally, a local maximum in the LMC's microlensing optical depth due to halo-on-disk stellar self-lensing is predicted. For the parameters of the stellar halo obtained, this maximum is located near MACHO events LMC-4 and LMC-23, and is large enough to possibly account for these two events, but not for all of the observed microlensing.Comment: 11 pages, 1 figure, accepted to ApJ Letter

    DC magnetic field generation in unmagnetized shear flows

    Get PDF
    The generation of DC magnetic fields in unmagnetized plasmas with velocity shear is predicted for non relativistic and relativistic scenarios either due to thermal effects or due to the onset of the Kelvin-Helmholtz instability (KHI). A kinetic model describes the growth and the saturation of the DC field. The predictions of the theory are confirmed by multidimensional particle-in-cell simulations, demonstrating the formation of long lived magnetic fields (t100sωpi1t \sim 100s \omega_{pi}^{-1}) along the full longitudinal extent of the shear layer, with transverse width on the electron length scale (γ0c/ωpe\sqrt{\gamma_0}c/\omega_{pe}), reaching magnitudes eBDC/mecωpeβ0γ0eB_{\mathrm{DC}}/m_ec\omega_{pe}\sim \beta_0\sqrt{\gamma_0}

    Phase transition for the frog model

    Full text link
    We study a system of simple random walks on graphs, known as frog model. This model can be described as follows: There are active and sleeping particles living on some graph G. Each active particle performs a simple random walk with discrete time and at each moment it may disappear with probability 1-p. When an active particle hits a sleeping particle, the latter becomes active. Phase transition results and asymptotic values for critical parameters are presented for Z^d and regular trees

    A dynamical model for the dusty ring in the Coalsack

    Get PDF
    Lada et al. recently presented a detailed near-infrared extinction map of Globule G2 in the Coalsack molecular cloud complex, showing that this starless core has a well-defined central extinction minimum. We propose a model for G2 in which a rapid increase in external pressure is driving an approximately symmetric compression wave into the core. The rapid increase in external pressure could arise because the core has recently been assimilated by the Coalsack cloud complex, or because the Coalsack has recently been created by two large-scale converging flows. The resulting compression wave has not yet converged on the centre of the core, so there is a central rarefaction. The compression wave has increased the density in the swept-up gas by about a factor of ten, and accelerated it inwards to speeds of order 0.4kms10.4 {\rm km} {\rm s}^{-1}. It is shown that even small levels of initial turbulence destroy the ring seen in projection almost completely. In the scenario of strong external compression that we are proposing this implies that the initial turbulent energy in this globule is such that Eturb/Egrav2E_{{\rm turb}} / E_{{\rm grav}} \le 2 %. Protostar formation should occur in about 40,000years40,000 {\rm years}.Comment: Accepted for publication in A&

    Electron-scale shear instabilities: magnetic field generation and particle acceleration in astrophysical jets

    Get PDF
    Strong shear flow regions found in astrophysical jets are shown to be important dissipation regions, where the shear flow kinetic energy is converted into electric and magnetic field energy via shear instabilities. The emergence of these self-consistent fields make shear flows significant sites for radiation emission and particle acceleration. We focus on electron-scale instabilities, namely the collisionless, unmagnetized Kelvin-Helmholtz instability (KHI) and a large-scale dc magnetic field generation mechanism on the electron scales. We show that these processes are important candidates to generate magnetic fields in the presence of strong velocity shears, which may naturally originate in energetic matter outburst of active galactic nuclei and gamma-ray bursters. We show that the KHI is robust to density jumps between shearing flows, thus operating in various scenarios with different density contrasts. Multidimensional particle-in-cell (PIC) simulations of the KHI, performed with OSIRIS, reveal the emergence of a strong and large-scale dc magnetic field component, which is not captured by the standard linear fluid theory. This dc component arises from kinetic effects associated with the thermal expansion of electrons of one flow into the other across the shear layer, whilst ions remain unperturbed due to their inertia. The electron expansion forms dc current sheets, which induce a dc magnetic field. Our results indicate that most of the electromagnetic energy developed in the KHI is stored in the dc component, reaching values of equipartition on the order of 10310^{-3} in the electron time-scale, and persists longer than the proton time-scale. Particle scattering/acceleration in the self generated fields of these shear flow instabilities is also analyzed

    Kinetic Monte Carlo simulation of the nitridation of the GaAs (100) surfaces

    Full text link
    We present, in this work, our preliminary results of a systematic theoretical study of the adsorption of N over As-terminated GaAs (100) (2×\times1) surfaces. We analyzed the changes in the bond-lenghts, bond-angles and the energetics involved before and after deposition. Our results show that the N-atoms will prefer the unoccupied sites of the surface, close to the As dimer. The presence of the N pushes the As dimer out of the surface, leading to the anion exchange between the N and As atoms. Based on our results, we discussed about the kinetics of the N islands formation during epitaxial growth of the III-Nitrides.Comment: 4 pages, 7 figures, accepted for publication in Braz. J. Phys., special number, Proceedings of BWSP-12, 12th Brazilian Workshop on Semiconductor Physic
    corecore