47,826 research outputs found
The Stellar Halo in the Large Magellanic Cloud: Mass, Luminosity, and Microlensing Predictions
Recently obtained kinematic data has shown that the Large Magellanic Cloud
(LMC) possesses an old stellar halo. In order to further characterize the
properties of this halo, parametric King models are fit to the surface density
of RR Lyrae stars. Using data from both the MACHO and OGLE II microlensing
surveys, the model fits yield the center of their distribution at RA =
05:21.1+-0.8, Dec = -69:45+-6 (J2000) and a core radius of 1.42+-0.12 kpc. As a
check the halo model is compared with RR Lyrae star counts in fields near the
LMC's periphery previously surveyed with photographic plates. These data,
however, require a cautious interpretation. Several topics regarding the LMC
stellar halo are discussed. First, the properties of the halo imply a global
mass-to-light ratio of M/L_V = 5.3+-2.1 and a total mass of 1.6+-0.6 10^10
M_sun for the LMC in good agreement with estimates based on the rotation curve.
Second, although the LMC's disk and halo are kinematically distinct, the shape
of the surface density profile of the halo is remarkably similar to that of the
young disk. For example, the best-fit exponential scale length for the RR Lyrae
stars is 1.47+-0.08 kpc, which compares to 1.46 kpc for the LMC's blue light.
In the Galaxy, the halo and disk do not resemble each other like this. Finally,
a local maximum in the LMC's microlensing optical depth due to halo-on-disk
stellar self-lensing is predicted. For the parameters of the stellar halo
obtained, this maximum is located near MACHO events LMC-4 and LMC-23, and is
large enough to possibly account for these two events, but not for all of the
observed microlensing.Comment: 11 pages, 1 figure, accepted to ApJ Letter
DC magnetic field generation in unmagnetized shear flows
The generation of DC magnetic fields in unmagnetized plasmas with velocity
shear is predicted for non relativistic and relativistic scenarios either due
to thermal effects or due to the onset of the Kelvin-Helmholtz instability
(KHI). A kinetic model describes the growth and the saturation of the DC field.
The predictions of the theory are confirmed by multidimensional
particle-in-cell simulations, demonstrating the formation of long lived
magnetic fields () along the full longitudinal
extent of the shear layer, with transverse width on the electron length scale
(), reaching magnitudes
Phase transition for the frog model
We study a system of simple random walks on graphs, known as frog model. This
model can be described as follows: There are active and sleeping particles
living on some graph G. Each active particle performs a simple random walk with
discrete time and at each moment it may disappear with probability 1-p. When an
active particle hits a sleeping particle, the latter becomes active. Phase
transition results and asymptotic values for critical parameters are presented
for Z^d and regular trees
A dynamical model for the dusty ring in the Coalsack
Lada et al. recently presented a detailed near-infrared extinction map of
Globule G2 in the Coalsack molecular cloud complex, showing that this starless
core has a well-defined central extinction minimum. We propose a model for G2
in which a rapid increase in external pressure is driving an approximately
symmetric compression wave into the core. The rapid increase in external
pressure could arise because the core has recently been assimilated by the
Coalsack cloud complex, or because the Coalsack has recently been created by
two large-scale converging flows. The resulting compression wave has not yet
converged on the centre of the core, so there is a central rarefaction. The
compression wave has increased the density in the swept-up gas by about a
factor of ten, and accelerated it inwards to speeds of order . It is shown that even small levels of initial turbulence destroy the
ring seen in projection almost completely. In the scenario of strong external
compression that we are proposing this implies that the initial turbulent
energy in this globule is such that .
Protostar formation should occur in about .Comment: Accepted for publication in A&
Electron-scale shear instabilities: magnetic field generation and particle acceleration in astrophysical jets
Strong shear flow regions found in astrophysical jets are shown to be
important dissipation regions, where the shear flow kinetic energy is converted
into electric and magnetic field energy via shear instabilities. The emergence
of these self-consistent fields make shear flows significant sites for
radiation emission and particle acceleration. We focus on electron-scale
instabilities, namely the collisionless, unmagnetized Kelvin-Helmholtz
instability (KHI) and a large-scale dc magnetic field generation mechanism on
the electron scales. We show that these processes are important candidates to
generate magnetic fields in the presence of strong velocity shears, which may
naturally originate in energetic matter outburst of active galactic nuclei and
gamma-ray bursters. We show that the KHI is robust to density jumps between
shearing flows, thus operating in various scenarios with different density
contrasts. Multidimensional particle-in-cell (PIC) simulations of the KHI,
performed with OSIRIS, reveal the emergence of a strong and large-scale dc
magnetic field component, which is not captured by the standard linear fluid
theory. This dc component arises from kinetic effects associated with the
thermal expansion of electrons of one flow into the other across the shear
layer, whilst ions remain unperturbed due to their inertia. The electron
expansion forms dc current sheets, which induce a dc magnetic field. Our
results indicate that most of the electromagnetic energy developed in the KHI
is stored in the dc component, reaching values of equipartition on the order of
in the electron time-scale, and persists longer than the proton
time-scale. Particle scattering/acceleration in the self generated fields of
these shear flow instabilities is also analyzed
Kinetic Monte Carlo simulation of the nitridation of the GaAs (100) surfaces
We present, in this work, our preliminary results of a systematic theoretical
study of the adsorption of N over As-terminated GaAs (100) (21)
surfaces. We analyzed the changes in the bond-lenghts, bond-angles and the
energetics involved before and after deposition. Our results show that the
N-atoms will prefer the unoccupied sites of the surface, close to the As dimer.
The presence of the N pushes the As dimer out of the surface, leading to the
anion exchange between the N and As atoms. Based on our results, we discussed
about the kinetics of the N islands formation during epitaxial growth of the
III-Nitrides.Comment: 4 pages, 7 figures, accepted for publication in Braz. J. Phys.,
special number, Proceedings of BWSP-12, 12th Brazilian Workshop on
Semiconductor Physic
- …
