52 research outputs found

    Work of Adhesion Analysis for Metal-Substituted W<sub>4</sub>C<sub>4</sub> Carbides in a Cobalt Matrix

    No full text
    The density of WC, which is greater than that of metals, can be reduced by partially substituting heavy W with metals, e.g., Mo and Cr, while retaining the desired strength. This makes them effective as reinforcements for hard-facing overlays and tool alloys, as they can be homogeneously dispersed in the metal matrix. Since it is unclear if the modified WC has good interfacial bonding with metals such as cobalt, one of the typical metal matrixes for hardfacing overlays, the interfacial bonding between cobalt and WC doped with Mo and Cr, respectively, was investigated via first principle calculations. The selected interfaces having the lowest interfacial mismatches with both HCP and FCC cobalt are (1120)Carbide//(001)Co, (1010)Carbide//(100)Co, (1010)Carbide//(110)Co, and (0001)Carbide//(110)Co. The characteristics of created interfacial connections were analyzed using methods such as the electron localization function, electronic density of states, bond order, and net charge. It is demonstrated that WC carbides partially substituted with Mo and Cr (called (W4–x, M)C4, M = Mo or Cr) are adherent to Co as strong as or even better than that of mono-WC. The metal-substituted or doped W4C4 carbides are promising candidates as reinforcements for hardfacing overlays, cutting tools, and bearings without interfacial bonding concerns

    Vibrational analysis of double-walled silicon carbide nano-cones: a finite element investigation

    No full text
    Abstract A three-dimensional finite element model is used to investigate the vibrational properties of double-walled silicon carbide nano-cones with various dimensions. The dependence of the vibrational properties of double-walled silicon carbide nano-cones on their length, apex angles and boundary conditions are evaluated. Current model consists a combination of beam and spring elements that simulates the interatomic interactions of bonding and nonbonding. The Lennard–Jones potential is employed to model the interactions between two non-bonding atoms. The fundamental frequency and mode shape of the double-walled silicon carbide nano-cones are calculated

    Highly compressible concrete: The effect of reinforcement design on concrete’s compressive behavior at high strains

    No full text
    In squeezing ground tunnel construction, yielding elements must absorb the large tunnel deformation without damaging the tunnel lining. Various designs for these highly compressible structures exist. Still, they all share one commonality: they are complicated to manufacture, and it is difficult to alter their design to match desired compressive properties. A new yielding element design is presented here, consisting of corrugated metal plates embedded within fiber-reinforced concrete. As this yielding element is compressed, the corrugated plates are gradually flattened, increasing the plates’ stiffness. This mechanism enables the engineering of structures with monotonically increasing compressive stress–strain curves and matches the target compressive properties. When compared against alternate reinforcement schemes, including fiber reinforcement, flat plate reinforcement, and polymeric lattice reinforcement, compression results indicate that only the corrugated metal plate reinforcement produced monotonically increasing stress–strain curves while keeping stress levels below a prescribed limit. Additionally, the corrugated metal plate-reinforced specimens began densification at a strain 280% larger than the strain at which the fiber-reinforced samples began densification, indicating that the corrugated metal plates extended the yield plateau. Fiber-reinforced concrete in conjunction with corrugated metal plates shows promise for use as a yielding element
    • …
    corecore