136 research outputs found
Recommended from our members
Time to flourish: designing a coaching psychology programme to promote resilience and wellbeing in postgraduate students
Background:
Poor mental health within the student population has become increasingly prevalent, with research suggesting that these figures are set to rise rapidly in the coming years. In this context, the search for evidence-based strategies to equip university students with the necessary skills to improve levels of resilience and wellbeing has become paramount.
Objectives:
To describe the results of a pilot run of ‘Time to Flourish: Achieving your Potential’, a coaching psychology programme designed to enhance wellbeing and help prevent mental health issues in university students.
Method:
The programme was based on the integrative cognitive-behavioural coaching model and delivered in 10 x 2-hour sessions to taught postgraduate students in the Institute of Psychiatry, Psychology and Neuroscience at King’s College London, between October 2018 and February 2019.
Results:
Students’ appraisal of the pilot suggested that it was effective in teaching them important practical tools for an enhanced experience of living, within and outside academia.
Conclusions:
Based on these students’ feedback, an updated version can now be formulated, which will allow an evidence-based evaluation of its effectiveness
Circular dichroism spectroscopic detection of ligand binding induced subdomain IB specific structural adjustment of human serum albumin
This work demonstrates for the first time that binding of various compounds within subdomain IB of human serum albumin (HSA) provokes characteristic changes in the near-UV circular dichroism (CD) spectrum of the protein. It can be inferred from the spectroscopic features of difference ellipticity signals and from CD displacement experiments that tyrosine residues located in subdomain IB are the source of the observed spectral alterations. It is proposed that inclusion of some ligand molecules (bile acids, dehydroepiandrosterone sulfate, steroidal terpenes, fatty acids, ibuprofen, and gemfibrozil) into the pocket of subdomain IB disrupts the Tyr138?Tyr161 interhelical π?π stacking interaction, which is reflected in the CD spectrum. This phenomenon can be utilized for the CD detection of subdomain IB specific binding of endo- as well as exogenous agents and to study the drug binding associated local conformational adaptation of the HSA molecule
Cardiometabolic risk profiles in a Sri Lankan twin and singleton sample.
INTRODUCTION: Prevention of cardiovascular disease and diabetes is a priority in low- and middle-income countries, especially in South Asia where these are leading causes of morbidity and mortality. The metabolic syndrome is a tool to identify cardiometabolic risk, but the validity of the metabolic syndrome as a clinical construct is debated. This study tested the existence of the metabolic syndrome, explored alternative cardiometabolic risk characterisations, and examined genetic and environmental factors in a South Asian population sample. METHODS: Data came from the Colombo Twin and Singleton follow-up Study, which recruited twins and singletons in Colombo, Sri Lanka, in 2012-2015 (n = 3476). Latent class analysis tested the clustering of metabolic syndrome indicators (waist circumference, high-density lipoprotein cholesterol, triglycerides, blood pressure, fasting plasma glucose, medications, and diabetes). Regression analyses tested cross-sectional associations between the identified latent cardiometabolic classes and sociodemographic covariates and health behaviours. Structural equation modelling estimated genetic and environmental contributions to cardiometabolic risk profiles. All analyses were stratified by sex (n = 1509 men, n = 1967 women). RESULTS: Three classes were identified in men: 1) "Healthy" (52.3%), 2) "Central obesity, high triglycerides, high fasting plasma glucose" (40.2%), and 3) "Central obesity, high triglycerides, diabetes" (7.6%). Four classes were identified in women: 1) "Healthy" (53.2%), 2) "Very high central obesity, low high-density lipoprotein cholesterol, raised fasting plasma glucose" (32.8%), 3) "Very high central obesity, diabetes" (7.2%) and 4) "Central obesity, hypertension, raised fasting plasma glucose" (6.8%). Older age in men and women, and high socioeconomic status in men, was associated with cardiometabolic risk classes, compared to the "Healthy" classes. In men, individual differences in cardiometabolic class membership were due to environmental effects. In women, genetic differences predicted class membership. CONCLUSION: The findings did not support the metabolic syndrome construct. Instead, distinct clinical profiles were identified for men and women, suggesting different aetiological pathways
Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor
Antidepressants increase adult hippocampal neurogenesis in animal models, but the underlying molecular mechanisms are unknown. In this study, we used human hippocampal progenitor cells to investigate the molecular pathways involved in the antidepressant-induced modulation of neurogenesis. Because our previous studies have shown that antidepressants regulate glucocorticoid receptor (GR) function, we specifically tested whether the GR may be involved in the effects of these drugs on neurogenesis. We found that treatment (for 3–10 days) with the antidepressant, sertraline, increased neuronal differentiation via a GR-dependent mechanism. Specifically, sertraline increased both immature, doublecortin (Dcx)-positive neuroblasts (+16%) and mature, microtubulin-associated protein-2 (MAP2)-positive neurons (+26%). This effect was abolished by the GR-antagonist, RU486. Interestingly, progenitor cell proliferation, as investigated by 5′-bromodeoxyuridine (BrdU) incorporation, was only increased when cells were co-treated with sertraline and the GR-agonist, dexamethasone, (+14%) an effect which was also abolished by RU486. Furthermore, the phosphodiesterase type 4 (PDE4)-inhibitor, rolipram, enhanced the effects of sertraline, whereas the protein kinase A (PKA)-inhibitor, H89, suppressed the effects of sertraline. Indeed, sertraline increased GR transactivation, modified GR phosphorylation and increased expression of the GR-regulated cyclin-dependent kinase-2 (CDK2) inhibitors, p27Kip1 and p57Kip2. In conclusion, our data suggest that the antidepressant, sertraline, increases human hippocampal neurogenesis via a GR-dependent mechanism that requires PKA signaling, GR phosphorylation and activation of a specific set of genes. Our data point toward an important role for the GR in the antidepressant-induced modulation of neurogenesis in humans
The preclinical pharmacology of the high affinity anti-IL-6R Nanobody (R) ALX-0061 supports its clinical development in rheumatoid arthritis
Introduction: The pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of different diseases, including rheumatoid arthritis (RA). ALX-0061 is a bispecific Nanobody (R) with a high affinity and potency for IL-6 receptor (IL-6R), combined with an extended half-life by targeting human serum albumin. We describe here the relevant aspects of its in vitro and in vivo pharmacology. Methods: ALX-0061 is composed of an affinity-matured IL-6R-targeting domain fused to an albumin-binding domain representing a minimized two-domain structure. A panel of different in vitro assays was used to characterize the biological activities of ALX-0061. The pharmacological properties of ALX-0061 were examined in cynomolgus monkeys, using plasma levels of total soluble (s)IL-6R as pharmacodynamic marker. Therapeutic effect was evaluated in a human IL-6-induced acute phase response model in the same species, and in a collagen-induced arthritis (CIA) model in rhesus monkeys, using tocilizumab as positive control. Results: ALX-0061 was designed to confer the desired pharmacological properties. A 200-fold increase of target affinity was obtained through affinity maturation of the parental domain. The high affinity for sIL-6R (0.19 pM) translated to a concentration-dependent and complete neutralization of sIL-6R in vitro. In cynomolgus monkeys, ALX-0061 showed a dose-dependent and complete inhibition of hIL-6-induced inflammatory parameters, including plasma levels of C-reactive protein (CRP), fibrinogen and platelets. An apparent plasma half-life of 6.6 days was observed after a single intravenous administration of 10 mg/kg ALX-0061 in cynomolgus monkeys, similar to the estimated expected half-life of serum albumin. ALX-0061 and tocilizumab demonstrated a marked decrease in serum CRP levels in a non-human primate CIA model. Clinical effect was confirmed in animals with active drug exposure throughout the study duration. Conclusions: ALX-0061 represents a minimized bispecific biotherapeutic of 26 kDa, nearly six times smaller than monoclonal antibodies. High in vitro affinity and potency was demonstrated. Albumin binding as a half-life extension technology resulted in describable and expected pharmacokinetics. Strong IL-6R engagement was shown to translate to in vivo effect in non-human primates, demonstrated via biomarker deregulation as well as clinical effect. Presented results on preclinical pharmacological properties of ALX-0061 are supportive of clinical development in RA
Albumin and multiple sclerosis
A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Leakage of the blood–brain barrier (BBB) is a common pathological feature in multiple sclerosis (MS). Following a breach of the BBB, albumin, the most abundant protein in plasma, gains access to CNS tissue where it is exposed to an inflammatory milieu and tissue damage, e.g., demyelination. Once in the CNS, albumin can participate in protective mechanisms. For example, due to its high concentration and molecular properties, albumin becomes a target for oxidation and nitration reactions. Furthermore, albumin binds metals and heme thereby limiting their ability to produce reactive oxygen and reactive nitrogen species. Albumin also has the potential to worsen disease. Similar to pathogenic processes that occur during epilepsy, extravasated albumin could induce the expression of proinflammatory cytokines and affect the ability of astrocytes to maintain potassium homeostasis thereby possibly making neurons more vulnerable to glutamate exicitotoxicity, which is thought to be a pathogenic mechanism in MS. The albumin quotient, albumin in cerebrospinal fluid (CSF)/albumin in serum, is used as a measure of blood-CSF barrier dysfunction in MS, but it may be inaccurate since albumin levels in the CSF can be influenced by multiple factors including: 1) albumin becomes proteolytically cleaved during disease, 2) extravasated albumin is taken up by macrophages, microglia, and astrocytes, and 3) the location of BBB damage affects the entry of extravasated albumin into ventricular CSF. A discussion of the roles that albumin performs during MS is put forth
Disturbances in Hypothalamic-Pituitary-Adrenal Axis and Immunological Activity Differentiating between Unipolar and Bipolar Depressive Episodes
Differentiating bipolar depression (BD) from unipolar depression (UD) is difficult in clinical practice and, consequently, accurate recognition of BD can take as long as nine years. Research has therefore focused on the discriminatory capacities of biomarkers, such as markers of the hypothalamic-pituitary-adrenal (HPA) axis or immunological activity. However, no previous study included assessments of both systems, which is problematic as they may influence each other. Therefore, this study aimed to explore whether cortisol indicators and inflammatory markers were a) independently associated with and/or b) showed effect modification in relation to a lifetime (hypo)manic episode in a large sample of depressed patients.Data were derived from the Netherlands Study of Depression and Anxiety and comprised 764 patients with a DSM-IV depressive disorder at baseline, of which 124 (16.2%) had a lifetime (hypo)manic episode at the 2-year assessment, or a more recent episode at the 4-year or 6-year assessment. Baseline cortisol awakening response, evening cortisol and diurnal cortisol slope were considered as cortisol indicators, while baseline C-reactive Protein (CRP), Interleukin-6 (IL-6), and Tumor Necrosis Factor Alpha (TNF-α) were included as inflammatory markers.In depressed men and women, none of the cortisol indicators and inflammatory markers were (independently) associated with a (hypo)manic episode. However, effect modification was found of diurnal cortisol slope and CRP in relation to a (hypo)manic episode. Further analyses showed that depressed men with high levels of diurnal cortisol slope and CRP had an increased odds (OR=10.99, p=.001) of having a (hypo)manic episode. No significant differences were found in women.Our findings suggest that the combination of high diurnal cortisol slope and high CRP may differentiate between UD and BD. This stresses the importance of considering HPA-axis and immunological activity simultaneously, but more research is needed to unravel their interrelatedness
- …