36 research outputs found

    Investigation of combustion of a coal–methane–air suspension in a long closed channel

    No full text
    Experimental data on the velocity of propagation of a combustion wave in a coal-methane-air mixture with respect to the walls of a closed channel for various concentrations of coal dust are presented. A physico-mathematical model of combustion of this mixture on the basis of equations of gas dynamics and mechanics of disperse media in the one-velocity one-temperature approximation is developed. In the proposed model, the velocity of propagation of the combustion wave with respect to the gas suspension and the burning rate of the coal dust particle are parameters of the model and are determined by providing the consistency between the computed and experimental results. A comparison of the calculated flame velocity with respect to the channel walls in a wide range of mass fractions of coal dust reveals reasonable agreement with the experiments. The proposed approach can be used for estimating the influence of coal dust combustion on the intensity of shock waves formed in coal mines in the case of accidental explosions of methane

    OSSEOINTEGRATION IN RECONSTRUCTIVE SURGERY: CONTEMPORARY STATE AND PERSPECTIVES OF FURHTHER DEVELOPMENT (REVIEW)

    No full text
    Method of intraosseous prosthesis based on the principle of osseointegration that was introduced by Prof. Per-Ingvar Branemark is one of the most perspective approaches in contemporary reconstructive surgery This method helps to achieve increased functional activity and to improve patients quality of life in comparison to conventional treatment. In presented article the results of prosthetic treatment of amputees of different localizations, application of this technology in cranio-fascial surgery, finger joint prostheses are discussed

    Dynamic of the Soil Microbiota in Short-Term Crop Rotation

    No full text
    Crop rotation is one of the oldest and most effective methods of restoring soil fertility, which declines when the same plant is grown repeatedly. One of the reasons for a reduction in fertility is the accumulation of pathogenic and unfavorable microbiota. The modern crop rotation schemes (a set of plant species and their order in the crop rotation) are highly effective but are designed without considering soil microbiota dynamics. The main goal of this study was to perform a short-term experiment with multiple plant combinations to access the microbiological effects of crop rotation. It could be useful for the design of long-term crop rotation schemes that take the microbiological effects of the crop rotation into account. For the analysis, five plants (legumes: vetch, clover, and cereals: oats, wheat, and barley) were used. These five plants were separately grown in pots with soil. After the first phase of vegetation, the plants were removed from the soil and a new crop was planted. Soil samples from all 25 possible combinations of primary and secondary crops were investigated using v4-16S rDNA gene sequencing. It was shown that the short-term experiments (up to 40 days of growing) are effective enough to find microbial shifts in bulk soil from different plants. Both primary and secondary cultures are significant factors for the microbial composition of microbial soil communities. Changes are the most significant in the microbial communities of vetch soils, especially in the case of vetch monoculture. Growing clover also leads to changes in microbiota, especially according to beta-diversity. Data obtained can be used to develop new crop rotation schemes that take into account the microbiological effects of various crops

    Bosea vaviloviae sp. nov., a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed.

    No full text
    The Gram-negative, rod-shaped slow-growing strains Vaf-17, Vaf-18(T) and Vaf-43 were isolated from the nodules of Vavilovia formosa plants growing in the hard-to-reach mountainous region of the North Ossetian State Natural Reserve (north Caucasus, Russian Federation). The sequencing of 16S rDNA (rrs), ITS region and five housekeeping genes (atpD, dnaK, recA, gyrB and rpoB) showed that the isolated strains were most closely related to the species Bosea lathyri (class Alphaproteobacteria, family Bradyrhizobiaceae) which was described for isolates from root nodules of Lathyrus latifolius. However the sequence similarity between the isolated strains and the type strain B. lathyri LMG 26379(T) for the ITS region was 90 % and for the housekeeping genes it was ranged from 92 to 95 %. All phylogenetic trees, except for the rrs-dendrogram showed that the isolates from V. formosa formed well-separated clusters within the Bosea group. Differences in phenotypic properties of the B. lathyri type strain and the isolates from V. formosa were studied using the microassay system GENIII MicroPlate BioLog. Whole-cell fatty acid analysis showed that the strains Vaf-17, Vaf-18(T) and Vaf-43 had notable amounts of C-16:0 (4.8-6.0 %), C-16:0 3-OH (6.4-6.6 %), C-16:1 omega 5c (8.8-9.0 %), C-17:0 cyclo (13.5-13.9 %), C-18:1 omega 7c (43.4-45.4 %), C-19:0 cyclo omega 8c (10.5-12.6 %) and Summed Feature (SF) 3 (6.4-8.0 %). The DNA-DNA relatedness between the strains Vaf-18(T) and B. lathyri LMG 26379(T) was 24.0 %. On the basis of genotypic and phenotypic analysis a new species Bosea vaviloviae sp. nov. (type strain RCAM 02129(T) = LMG 28367(T) = Vaf-18(T)) is proposed

    Extra-slow-growing Tardiphaga strains isolated from nodules of Vavilovia formosa (Stev.) Fed.

    No full text
    Eleven extra-slow-growing strains were isolated from nodules of the relict legume Vavilovia formosa growing in North Ossetia (Caucasus) and Armenia. All isolates formed a single rrs cluster together with the type strain Tardiphaga robiniae LMG 26467(T), while the sequencing of the 16S-23S rDNA intergenic region (ITS) and housekeeping genes glnII, atpD, dnaK, gyrB, recA and rpoB divided them into three groups. North Ossetian isolates (in contrast to the Armenian ones) were clustered separately from the type strain LMG 26467(T). However, all isolates were classified as T. robiniae because the DNA-DNA relatedness between them and the type strain LMG 26467(T) was 69.6 % minimum. Two symbiosis-related genes (nodM and nodT) were amplified in all isolated Tardiphaga strains. It was shown that the nodM gene phylogeny is similar to that of ITS and housekeeping genes. The presence of the other symbiosis-related genes in described Tardiphaga strains, which is recently described genus of rhizobia, as well as their ability to form nodules on any plants are under investigation
    corecore