10,877 research outputs found
Non-destructive Orthonormal State Discrimination
We provide explicit quantum circuits for the non-destructive deterministic
discrimination of Bell states in the Hilbert space , where is
qudit dimension. We discuss a method for generalizing this to non-destructive
measurements on any set of orthogonal states distributed among parties.
From the practical viewpoint, we show that such non-destructive measurements
can help lower quantum communication complexity under certain conditions.Comment: 11 pages, 6 fugure
Role of solar flare index in long term modulation of cosmic ray intensity
Recently, the importance of the occurrence of solar flares in the long-term modulation of cosmic ray intensity has been re-emphasized. For this purpose, the data of solar flares have been used from various publications, such as Solar Geophysical Data books, U.A.G. reports and Quarterly Bulletin Of Solar Activity. Research very clearly reveals that even the periodic changes in the solar flare observations, obtained from the four different data sources, for the same interval, differ significantly from one another; this is evidenced even on an average basis. Hence, in any study using solar flares, the importance of selecting a single compilation of the solar-flare data for the entire period of investigation is stressed
Enhanced grain surface effect on magnetic properties of nanometric La0.7Ca0.3MnO3 manganite : Evidence of surface spin freezing of manganite nanoparticles
We have investigated the effect of nanometric grain size on magnetic
properties of single phase, nanocrystalline, granular La0.7Ca0.3MnO3 (LCMO)
sample. We have considered core-shell structure of our LCMO nanoparticles,
which can explain its magnetic properties. From the temperature dependence of
field cooled (FC) and zero-field cooled (ZFC) dc magnetization (DCM), the
magnetic properties could be distinguished into two regimes: a relatively high
temperature regime T > 40 K where the broad maximum of ZFC curve (at T = Tmax)
is associated with the blocking of core particle moments, whereas the sharp
maximum (at T = TS) is related to the freezing of surface (shell) spins. The
unusual shape of M (H) loop at T = 1.5 K, temperature dependent feature of
coercive field and remanent magnetization give a strong support of surface spin
freezing that are occurring at lower temperature regime (T < 40 K) in this LCMO
nanoparticles. Additionally, waiting time (tw) dependence of ZFC relaxation
measurements at T = 50 K show weak dependence of relaxation rate [S(t)] on tw
and dM/dln(t) following a logarithmic variation on time. Both of these features
strongly support the high temperature regime to be associated with the blocking
of core moments. At T = 20 K, ZFC relaxation measurements indicates the
existence of two different types of relaxation processes in the sample with
S(t) attaining a maximum at the elapsed time very close to the wait time tw =
1000 sec, which is an unequivocal sign of glassy behavior. This age-dependent
effect convincingly establish the surface spin freezing of our LCMO
nanoparticles associated with a background of superparamagnetic (SPM) phase of
core moments.Comment: 41 pages, 10 figure
Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8µm
The design and characterization of silicon-on-insulator mid- infrared spectrometers operating at 3.8µm is reported. The devices are fabricated on 200mm SOI wafers in a CMOS pilot line. Both arrayed waveguide grating structures and planar concave grating structures were designed and tested. Low insertion loss (1.5-2.5dB) and good crosstalk characteristics (15-20dB) are demonstrated, together with waveguide propagation losses in the range of 3 to 6dB/cm
Radar Cross Section Studies/Compact Range Research
A summary is given of the achievements of NASA Grant NsG-1613 by Ohio State University from May 1, 1987 to April 30, 1988. The major topics covered are as follows: (1) electromagnetic scattering analysis; (2) indoor scattering measurement systems; (3) RCS control; (4) waveform processing techniques; (5) material scattering and design studies; (6) design and evaluation of design studies; and (7) antenna studies. Major progress has been made in each of these areas as verified by the numerous publications produced
The Mechanism Design Approach to Student Assignment
The mechanism design approach to student assignment involves the theoretical, empirical, and experimental study of systems used to allocate students into schools around the world. Recent practical experience designing systems for student assignment has raised new theoretical questions for the theory of matching and assignment. This article reviews some of this recent literature, highlighting how issues from the field motivated theoretical developments and emphasizing how the dialogue may be a road map for other areas of applied mechanism design. Finally, it concludes with some open questions.National Science Foundation (U.S.
Vertisols and associated soils: Bibliographic database with special reference to sub-Saharan Africa
Simple model of the static exchange-correlation kernel of a uniform electron gas with long-range electron-electron interaction
A simple approximate expression in real and reciprocal spaces is given for
the static exchange-correlation kernel of a uniform electron gas interacting
with the long-range part only of the Coulomb interaction. This expression
interpolates between the exact asymptotic behaviors of this kernel at small and
large wave vectors which in turn requires, among other thing, information from
the momentum distribution of the uniform electron gas with the same interaction
that have been calculated in the G0W0 approximation. This exchange-correlation
kernel as well as its complement analogue associated to the short-range part of
the Coulomb interaction are more local than the Coulombic exchange-correlation
kernel and constitute potential ingredients in approximations for recent
adiabatic connection fluctuation-dissipation and/or density functional theory
approaches of the electronic correlation problem based on a separate treatment
of long-range and short-range interaction effects.Comment: 14 pages, 14 figures, to be published in Phys. Rev.
Higher order antibunching is not a rare phenomenon
Since the introduction of higher order nonclassical effects, higher order
squeezing has been reported in a number of different physical systems but
higher order antibunching is predicted only in three particular cases. In the
present work, we have shown that the higher order antibunching is not a rare
phenomenon rather it can be seen in many simple optical processes. To establish
our claim, we have shown it in six wave mixing process, four wave mixing
process and in second harmonic generation process.Comment: 6 pages, no figure, Latex 2
Nonlinear photoluminescence spectra from a quantum dot-cavity system: Direct evidence of pump-induced stimulated emission and anharmonic cavity-QED
We investigate the power-dependent photoluminescence spectra from a strongly
coupled quantum dot-cavity system using a quantum master equation technique
that accounts for incoherent pumping, pure dephasing, and fermion or boson
statistics. Analytical spectra at the one-photon correlation level and the
numerically exact multi-photon spectra for fermions are presented. We compare
to recent experiments on a quantum dot-micropiller cavity system and show that
an excellent fit to the data can be obtained by varying only the incoherent
pump rates in direct correspondence with the experiments. Our theory and
experiments together show a clear and systematic way of studying
stimulated-emission induced broadening and anharmonic cavity-QED.Comment: We have reworked our previous arXiv paper and submitted this latest
version for peer revie
- …
