1,141 research outputs found

    Experimental verification of the multistage depressed collector design procedure for a high-perveance, helix-type, traveling-wave tube

    Get PDF
    The validity of a computational procedure for the design of multistage depressed collectors (MDC's) is demonstrated for a traveling wave tube (TWT) with a perveance of .00000123. The MDC is used with spent-beam refocusing to improve substantially the efficiency of the TWT. Reports on this subject have verified, under a variety of operating conditions, the MDC design procedure for TWT's with lower perveance. The design procedure is based on two computer programs that create a mathematical model of the electric and magnetic fields of the TWT refocuser MDC system and its electron beam. The two principal outputs of the analysis are a description of the radiofrequency (RF) performance of the TWT and the trajectories of representatives groups of charges from the input of the TWT to their points of interception on the MDC electrodes

    Analytical prediction with multidimensional computer programs and experimental verification of the performance, at a variety of operating conditions, of two traveling wave tubes with depressed collectors

    Get PDF
    Experimental and analytical results are compared for two high performance, octave bandwidth TWT's that use depressed collectors (MDC's) to improve the efficiency. The computations were carried out with advanced, multidimensional computer programs that are described here in detail. These programs model the electron beam as a series of either disks or rings of charge and follow their multidimensional trajectories from the RF input of the ideal TWT, through the slow wave structure, through the magnetic refocusing system, to their points of impact in the depressed collector. Traveling wave tube performance, collector efficiency, and collector current distribution were computed and the results compared with measurements for a number of TWT-MDC systems. Power conservation and correct accounting of TWT and collector losses were observed. For the TWT's operating at saturation, very good agreement was obtained between the computed and measured collector efficiencies. For a TWT operating 3 and 6 dB below saturation, excellent agreement between computed and measured collector efficiencies was obtained in some cases but only fair agreement in others. However, deviations can largely be explained by small differences in the computed and actual spent beam energy distributions. The analytical tools used here appear to be sufficiently refined to design efficient collectors for this class of TWT. However, for maximum efficiency, some experimental optimization (e.g., collector voltages and aperture sizes) will most likely be required

    Preliminary Canopy Removal Experiments in Algal Dominated Communities Low on the Shore and in the Shallow Subtidal on the Isle of Man

    No full text
    The algal dominated communities immediately above and below the low-water spring level on a moderately exposed Manx shore were investigated by canopy removal experiments. Fucus serratus, Laminaria digitata and L. hyperborea were removed. Competition was shown to be important in determining the zonation of L. digitata and the distribution along the wave exposure gradient of other species such as Alaria esculenta, Desmarestia aculeata and D. viridis, and L. saccharina. Many species of algal epiphytes were early colonizers of canopy removal areas suggesting that competition from canopy algae usually restricts them to an epiphytic habit. The results indicate that interactions between macrophytes are much more important than grazing in structuring these communities

    Investigation of transition frequencies of two acoustically coupled bubbles using a direct numerical simulation technique

    Full text link
    The theoretical results regarding the ``transition frequencies'' of two acoustically interacting bubbles have been verified numerically. The theory provided by Ida [Phys. Lett. A 297 (2002) 210] predicted the existence of three transition frequencies per bubble, each of which has the phase difference of π/2\pi /2 between a bubble's pulsation and the external sound field, while previous theories predicted only two natural frequencies which cause such phase shifts. Namely, two of the three transition frequencies correspond to the natural frequencies, while the remaining does not. In a subsequent paper [M. Ida, Phys. Rev. E 67 (2003) 056617], it was shown theoretically that transition frequencies other than the natural frequencies may cause the sign reversal of the secondary Bjerknes force acting between pulsating bubbles. In the present study, we employ a direct numerical simulation technique that uses the compressible Navier-Stokes equations with a surface-tension term as the governing equations to investigate the transition frequencies of two coupled bubbles by observing their pulsation amplitudes and directions of translational motion, both of which change as the driving frequency changes. The numerical results reproduce the recent theoretical predictions, validating the existence of the transition frequencies not corresponding to the natural frequency.Comment: 18 pages, 8 figures, in pres

    Ultrasound imaging of tumor perfusion

    Get PDF
    • …
    corecore