13,628 research outputs found

    Exponential Distributions in a Mechanical Model for Earthquakes

    Full text link
    We study statistical distributions in a mechanical model for an earthquake fault introduced by Burridge and Knopoff [R. Burridge and L. Knopoff, {\sl Bull. Seismol. Soc. Am.} {\bf 57}, 341 (1967)]. Our investigations on the size (moment), time duration and number of blocks involved in an event show that exponential distributions are found in a given range of the paramenter space. This occurs when the two kinds of springs present in the model have the same, or approximately the same, value for the elastic constants. Exponential distributions have also been seen recently in an experimental system to model earthquake-like dynamics [M. A. Rubio and J. Galeano, {\sl Phys. Rev. E} {\bf 50}, 1000 (1994)].Comment: 11 pages, uuencoded (submitted to Phys. Rev. E

    Love kills: Simulations in Penna Ageing Model

    Full text link
    The standard Penna ageing model with sexual reproduction is enlarged by adding additional bit-strings for love: Marriage happens only if the male love strings are sufficiently different from the female ones. We simulate at what level of required difference the population dies out.Comment: 14 pages, including numerous figure

    Euclidean thermal spinor Green's function in the spacetime of a straight cosmic string

    Full text link
    Within the framework of the quantum field theory at finite temperature on a conical space, we determine the Euclidean thermal spinor Green's function for a massless spinor field. We then calculate the thermal average of the energy-momentum tensor of a thermal bath of massless fermions. In the high-temperature limit, we find that the straight cosmic string does not perturb the thermal bathComment: 11 pages, latex, no figure

    The new automated daily mortality surveillance system

    Get PDF
    The experience reported in an earlier Eurosurveillance issue on a fast method to evaluate the impact of the 2003 heatwave on mortality in Portugal, generated a daily mortality surveillance system (VDM) that has been operating ever since jointly with the Portuguese Heat Health Watch Warning System. This work describes the VDM system and how it evolved to become an automated system operating year-round, and shows briefly its potential using mortality data from January 2006 to June 2009 collected by the system itself. The new system has important advantages such as: rapid information acquisition, completeness (the entire population is included), lightness (very little information is exchanged, date of death, age, sex, place of death registration). It allows rapid detection of impacts (within five days) and allows a quick preliminary quantification of impacts that usually took several years to be done. These characteristics make this system a powerful tool for public health action. The VDM system also represents an example of inter-institutional cooperation, bringing together organisations from two different ministries, Health and Justice, aiming at improving knowledge about the mortality in the population

    Universal Programmable Quantum Circuit Schemes to Emulate an Operator

    Get PDF
    Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. They have almost the same quantum complexities as non-general circuits. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.Comment: combined with former arXiv:1207.174

    CVD of CrO2: towards a lower temperature deposition process

    Get PDF
    We report on the synthesis of highly oriented a-axis CrO2 films onto (0001) sapphire by atmospheric pressure CVD from CrO3 precursor, at growth temperatures down to 330 degree Celsius, i.e. close to 70 degrees lower than in published data for the same chemical system. The films keep the high quality magnetic behaviour as those deposited at higher temperature, which can be looked as a promising result in view of their use with thermally sensitive materials, e.g. narrow band gap semiconductors.Comment: 13 pages, 4 figure

    Anomalous magnetoresistance behavior of CoFe nano-oxide spin valves at low temperatures

    Full text link
    We report magnetoresistance curves of CoFe nano-oxide specular spin valves of MnIr/CoFe/nano-oxidized CoFe/CoFe/Cu/CoFe/nano-oxidized CoFe/Ta at different temperatures from 300 to 20 K. We extend the Stoner-Wolfarth model of a common spin valve to a specular spin valve, introducing the separation of the pinned layer into two sublayers and their magnetic coupling across the nano-oxide. We study the effect of different coupling/exchange (between the antiferromagnetic layer and the bottom sublayer) field ratios on the magnetization and magnetoresistance, corresponding with the experimentally observed anomalous bumps in low temperature magnetoresistance curves.Comment: 4 pages; 3 figure

    Vorton Formation

    Get PDF
    In this paper we present the first analytic model for vorton formation. We start by deriving the microscopic string equations of motion in Witten's superconducting model, and show that in the relevant chiral limit these coincide with the ones obtained from the supersonic elastic models of Carter and Peter. We then numerically study a number of solutions of these equations of motion and thereby suggest criteria for deciding whether a given superconducting loop configuration can form a vorton. Finally, using a recently developed model for the evolution of currents in superconducting strings we conjecture, by comparison with these criteria, that string networks formed at the GUT phase transition should produce no vortons. On the other hand, a network formed at the electroweak scale can produce vortons accounting for up to 6% of the critical density. Some consequences of our results are discussed.Comment: 41 pages; color figures 3-6 not included, but available from authors. To appear in Phys. Rev.
    corecore